Szkolenia NLP w Białystok

NLP Training in Białystok
Natural Language Processing, Natural Language Processing courses

Białystok, ul. Malmeda 1

sale szkoleniowe NobleProg
ul. Malmeda 1
Białystok, PL 15-440
Poland
Podlaskie PL
Na terenie Białegostoku, NobleProg ściśle współpracuje z firmą T-Matic, której sale szkoleniowe położone są w samym centrum Starego Rynku. Wysokiej jakości...Read more

Opinie uczestników

Natural Language Processing with Python

I did like the exercises

- Office for National Statistics

Neural Networks Fundamentals using TensorFlow as Example

Knowledgeable trainer

Sridhar Voorakkara - INTEL R&D IRELAND LIMITED

Neural Networks Fundamentals using TensorFlow as Example

I was amazed at the standard of this class - I would say that it was university standard.

David Relihan - INTEL R&D IRELAND LIMITED

Neural Networks Fundamentals using TensorFlow as Example

Very good all round overview.Good background into why Tensorflow operates as it does.

Kieran Conboy - INTEL R&D IRELAND LIMITED

Neural Networks Fundamentals using TensorFlow as Example

I liked the opportunities to ask questions and get more in depth explanations of the theory.

Sharon Ruane - INTEL R&D IRELAND LIMITED

NLP Course Events - Białystok

Kod Nazwa Miejscowość Czas trwania Data Kursu PHP Cena szkolenia [Zdalne / Stacjonarne]
tsflw2v Natural Language Processing with TensorFlow Białystok, ul. Malmeda 1 35 hours pon., 2017-10-16 09:00 33600PLN / 11932PLN
python_nltk Natural Language Processing with Python Białystok, ul. Malmeda 1 28 hours wt., 2017-10-24 09:00 27780PLN / 9818PLN
Neuralnettf Neural Networks Fundamentals using TensorFlow as Example Białystok, ul. Malmeda 1 28 hours wt., 2017-10-24 09:00 30980PLN / 10788PLN
aitech Artificial Intelligence - the most applied stuff - Data Analysis + Distributed AI + NLP Białystok, ul. Malmeda 1 21 hours wt., 2017-11-07 09:00 9850PLN / 4035PLN
nlp Natural Language Processing Białystok, ul. Malmeda 1 21 hours pon., 2017-11-13 09:00 7200PLN / 3450PLN

Plany Kursów

Kod Nazwa Czas trwania Spis treści
aitech Artificial Intelligence - the most applied stuff - Data Analysis + Distributed AI + NLP 21 hours
  1. Distribution big data
    1. Data mining methods (training single systems + distributed prediction: traditional machine learning algorithms + Mapreduce distributed prediction)
    2. Apache Spark MLlib
  2. Recommendations and Advertising:
    1. Natural language
    2. Text clustering, text categorization (labeling), synonyms
    3. User profile restore, labeling system
    4. Recommended algorithms
    5. Insuring the accuracy of "lift" between and within categories
    6. How to create closed loops for recommendation algorithms
  3. Logical regression, RankingSVM,
  4. Feature recognition (deep learning and automatic feature recognition for graphics)
  5. Natural language
    1. Chinese word segmentation
    2. Theme model (text clustering)
    3. Text classification
    4. Extract keywords
    5. Semantic analysis, semantic parser, word2vec (vector to word)
    6. RNN long-term memory (TSTM) architecture
tsflw2v Natural Language Processing with TensorFlow 35 hours

TensorFlow™ is an open source software library for numerical computation using data flow graphs.

SyntaxNet is a neural-network Natural Language Processing framework for TensorFlow.

Word2Vec is used for learning vector representations of words, called "word embeddings". Word2vec is a particularly computationally-efficient predictive model for learning word embeddings from raw text. It comes in two flavors, the Continuous Bag-of-Words model (CBOW) and the Skip-Gram model (Chapter 3.1 and 3.2 in Mikolov et al.).

Used in tandem, SyntaxNet and Word2Vec allows users to generate Learned Embedding models from Natural Language input.

Audience

This course is targeted at Developers and engineers who intend to work with SyntaxNet and Word2Vec models in their TensorFlow graphs.

After completing this course, delegates will:

  • understand TensorFlow’s structure and deployment mechanisms
  • be able to carry out installation / production environment / architecture tasks and configuration
  • be able to assess code quality, perform debugging, monitoring
  • be able to implement advanced production like training models, embedding terms, building graphs and logging

Getting Started

  • Setup and Installation

TensorFlow Basics

  • Creation, Initializing, Saving, and Restoring TensorFlow variables
  • Feeding, Reading and Preloading TensorFlow Data
  • How to use TensorFlow infrastructure to train models at scale
  • Visualizing and Evaluating models with TensorBoard

TensorFlow Mechanics 101

  • Prepare the Data
    • Download
    • Inputs and Placeholders
  • Build the Graph
    • Inference
    • Loss
    • Training
  • Train the Model
    • The Graph
    • The Session
    • Train Loop
  • Evaluate the Model
    • Build the Eval Graph
    • Eval Output

Advanced Usage

  • Threading and Queues
  • Distributed TensorFlow
  • Writing Documentation and Sharing your Model
  • Customizing Data Readers
  • Using GPUs
  • Manipulating TensorFlow Model Files

TensorFlow Serving

  • Introduction
  • Basic Serving Tutorial
  • Advanced Serving Tutorial
  • Serving Inception Model Tutorial

Getting Started with SyntaxNet

  • Parsing from Standard Input
  • Annotating a Corpus
  • Configuring the Python Scripts

Building an NLP Pipeline with SyntaxNet

  • Obtaining Data
  • Part-of-Speech Tagging
  • Training the SyntaxNet POS Tagger
  • Preprocessing with the Tagger
  • Dependency Parsing: Transition-Based Parsing
  • Training a Parser Step 1: Local Pretraining
  • Training a Parser Step 2: Global Training

Vector Representations of Words

  • Motivation: Why Learn word embeddings?
  • Scaling up with Noise-Contrastive Training
  • The Skip-gram Model
  • Building the Graph
  • Training the Model
  • Visualizing the Learned Embeddings
  • Evaluating Embeddings: Analogical Reasoning
  • Optimizing the Implementation

 

 

nlpwithr NLP: Natural Language Processing with R 21 hours

It is estimated that unstructured data accounts for more than 90 percent of all data, much of it in the form of text. Blog posts, tweets, social media, and other digital publications continuously add to this growing body of data.

This course centers around extracting insights and meaning from this data. Utilizing the R Language and Natural Language Processing (NLP) libraries, we combine concepts and techniques from computer science, artificial intelligence, and computational linguistics to algorithmically understand the meaning behind text data. Data samples are available in various languages per customer requirements.

By the end of this training participants will be able to prepare data sets (large and small) from disparate sources, then apply the right algorithms to analyze and report on its significance.

Audience
    Linguists and programmers

Format of the course
    Part lecture, part discussion, heavy hands-on practice, occasional tests to gauge understanding

Introduction
    NLP and R vs Python

Installing and configuring R Studio

Installing R packages related to Natural Language Processing (NLP).

An overview of R’s text manipulation capabilities

Getting started with an NLP project in R

Reading and importing data files into R

Text manipulation with R

Document clustering in R

Parts of speech tagging in R

Sentence parsing in R

Working with regular expressions in R

Named-entity recognition in R

Topic modeling in R

Text classification in R

Working with very large data sets

Visualizing your results

Optimization

Integrating R with other languages (Java, Python, etc.)

Closing remarks

nlp Natural Language Processing 21 hours

This course has been designed for people interested in extracting meaning from written English text, though the knowledge can be applied to other human languages as well.

The course will cover how to make use of text written by humans, such as  blog posts, tweets, etc...

For example, an analyst can set up an algorithm which will reach a conclusion automatically based on extensive data source.

Short Introduction to NLP methods

  • word and sentence tokenization
  • text classification
  • sentiment analysis
  • spelling correction
  • information extraction
  • parsing
  • meaning extraction
  • question answering

Overview of NLP theory

  • probability
  • statistics
  • machine learning
  • n-gram language modeling
  • naive bayes
  • maxent classifiers
  • sequence models (Hidden Markov Models)
  • probabilistic dependency
  • constituent parsing
  • vector-space models of meaning
python_nltk Natural Language Processing with Python 28 hours This course introduces linguists or programmers to NLP in Python. During this course we will mostly use nltk.org (Natural Language Tool Kit), but also we will use other libraries relevant and useful for NLP. At the moment we can conduct this course in Python 2.x or Python 3.x. Examples are in English or Mandarin (普通话). Other languages can be also made available if agreed before booking.

Overview of Python packages related to NLP

 

Introduction to NLP (examples in Python of course)

  1. Simple Text Manipulation
    1. Searching Text
    2. Counting Words
    3. Splitting Texts into Words
    4. Lexical dispersion
  2. Processing complex structures
    1. Representing text in Lists
    2. Indexing Lists
    3. Collocations
    4. Bigrams
    5. Frequency Distributions
    6. Conditionals with Words
    7. Comparing Words (startswith, endswith, islower, isalpha, etc...)
  3. Natural Language Understanding
    1. Word Sense Disambiguation
    2. Pronoun Resolution
  4. Machine translations (statistical, rule based, literal, etc...)
  5. Exercises

NLP in Python in examples

  1. Accessing Text Corpora and Lexical Resources
    1. Common sources for corpora
    2. Conditional Frequency Distributions
    3. Counting Words by Genre
    4. Creating own corpus
    5. Pronouncing Dictionary
    6. Shoebox and Toolbox Lexicons
    7. Senses and Synonyms
    8. Hierarchies
    9. Lexical Relations: Meronyms, Holonyms
    10. Semantic Similarity
  2. Processing Raw Text
    1. Priting
    2. struncating
    3. extracting parts of string
    4. accessing individual charaters
    5. searching, replacing, spliting, joining, indexing, etc...
    6. using regular expressions
    7. detecting word patterns
    8. stemming
    9. tokenization
    10. normalization of text
    11. Word Segmentation (especially in Chinese)
  3. Categorizing and Tagging Words
    1. Tagged Corpora
    2. Tagged Tokens
    3. Part-of-Speech Tagset
    4. Python Dictionaries
    5. Words to Propertieis mapping
    6. Automatic Tagging
    7. Determining the Category of a Word (Morphological, Syntactic, Semantic)
  4. Text Classification (Machine Learning)
    1. Supervised Classification
    2. Sentence Segmentation
    3. Cross Validation
    4. Decision Trees
  5. Extracting Information from Text
    1. Chunking
    2. Chinking
    3. Tags vs Trees
  6. Analyzing Sentence Structure
    1. Context Free Grammar
    2. Parsers
  7. Building Feature Based Grammars
    1. Grammatical Features
    2. Processing Feature Structures
  8. Analyzing the Meaning of Sentences
    1. Semantics and Logic
    2. Propositional Logic
    3. First-Order Logic
    4. Discourse Semantics
  9.  Managing Linguistic Data 
    1. Data Formats (Lexicon vs Text)
    2. Metadata
Neuralnettf Neural Networks Fundamentals using TensorFlow as Example 28 hours

This course will give you knowledge in neural networks and generally in machine learning algorithm,  deep learning (algorithms and applications).

This training is more focus on fundamentals, but will help you choosing the right technology : TensorFlow, Caffe, Teano, DeepDrive, Keras, etc. The examples are made in TensorFlow.

TensorFlow Basics

  • Creation, Initializing, Saving, and Restoring TensorFlow variables
  • Feeding, Reading and Preloading TensorFlow Data
  • How to use TensorFlow infrastructure to train models at scale
  • Visualizing and Evaluating models with TensorBoard

TensorFlow Mechanics

  • Inputs and Placeholders
  • Build the GraphS
    • Inference
    • Loss
    • Training
  • Train the Model
    • The Graph
    • The Session
    • Train Loop
  • Evaluate the Model
    • Build the Eval Graph
    • Eval Output

The Perceptron

  • Activation functions
  • The perceptron learning algorithm
  • Binary classification with the perceptron
  • Document classification with the perceptron
  • Limitations of the perceptron

From the Perceptron to Support Vector Machines

  • Kernels and the kernel trick
  • Maximum margin classification and support vectors

Artificial Neural Networks

  • Nonlinear decision boundaries
  • Feedforward and feedback artificial neural networks
  • Multilayer perceptrons
  • Minimizing the cost function
  • Forward propagation
  • Back propagation
  • Improving the way neural networks learn

Convolutional Neural Networks

  • Goals
  • Model Architecture
  • Principles
  • Code Organization
  • Launching and Training the Model
  • Evaluating a Model

Other regions

Consulting

Szkolenie NLP w Białystok, szkolenie wieczorowe NLP w Białystok, szkolenie weekendowe NLP w Białystok, NLP boot camp w Białystok, kurs zdalny NLP w Białystok , kurs online NLP w Białystok, nauka przez internet NLP w Białystok, Trener NLP w Białystok, edukacja zdalna NLP w Białystok, nauczanie wirtualne NLP w Białystok, wykładowca NLP w Białystok ,Kursy NLP w Białystok, instruktor NLP w Białystok,Kurs NLP w Białystok

Kursy w promocyjnej cenie

Szkolenie Miejscowość Data Kursu Cena szkolenia [Zdalne / Stacjonarne]
Visual Basic for Applications (VBA) w Excel - poziom zaawansowany Warszawa, ul. Złota 3/11 pon., 2017-09-25 09:00 3069PLN / 1623PLN
Programowanie w języku C++ Wrocław, ul.Ludwika Rydygiera 2a/22 pon., 2017-09-25 09:00 5445PLN / 2815PLN
Java Performance Tuning Wrocław, ul.Ludwika Rydygiera 2a/22 pon., 2017-09-25 09:00 9801PLN / 3000PLN
Tworzenie i zarządzanie stronami WWW Poznań, Garbary 100/63 pon., 2017-09-25 09:00 5841PLN / 2298PLN
Techniki DTP (InDesign, Photoshop, Illustrator, Acrobat) Katowice ul. Opolska 22 pon., 2017-09-25 09:00 5940PLN / 3730PLN
SQL in Microsoft Access Kraków, ul. Rzemieślnicza 1 wt., 2017-09-26 09:00 10266PLN / 3911PLN
Certyfikacja OCUP2 UML 2.5 - Przygotowanie do egzaminu OCUP2 Foundation Kraków, ul. Rzemieślnicza 1 śr., 2017-09-27 09:00 6930PLN / 3510PLN
Visual Basic for Applications (VBA) w Excel dla analityków Poznań, Garbary 100/63 śr., 2017-09-27 09:00 2970PLN / 1590PLN
Adobe InDesign Katowice ul. Opolska 22 czw., 2017-09-28 09:00 1881PLN / 1327PLN
Wzorce projektowe w C# Rzeszów, Plac Wolności 13 czw., 2017-09-28 09:00 3861PLN / 2331PLN
Tworzenie aplikacji na platformie Android Łódź, ul. Tatrzańska 11 pon., 2017-10-02 09:00 4455PLN / 3128PLN
Statistical and Econometric Modelling Warszawa, ul. Złota 3/11 pon., 2017-10-02 09:00 20483PLN / 6807PLN
Efektywna komunikacja interpersonalna z elementami asertywności Kraków, ul. Rzemieślnicza 1 wt., 2017-10-03 09:00 5148PLN / 1830PLN
Visual Basic for Applications (VBA) w Excel - wstęp do programowania Szczecin, ul. Sienna 9 pon., 2017-10-09 09:00 3564PLN / 1891PLN
Web Development with Symfony3 Kielce, ul. Warszawska 19 pon., 2017-10-09 09:00 5554PLN / 2483PLN
Access - podstawy Szczecin, ul. Sienna 9 wt., 2017-10-10 09:00 3465PLN / 1550PLN
Analiza biznesowa i systemowa z użyciem notacji UML - warsztat praktyczny dla PO w metodyce Scrum Łódź, ul. Tatrzańska 11 wt., 2017-10-10 09:00 7722PLN / 3474PLN
MS-40361 Software Development Fundamentals MTA Exam 98-361 Gdynia, ul. Ejsmonda 2 śr., 2017-10-11 09:00 6138PLN / 2610PLN
UML Analysis and Design Kraków, ul. Rzemieślnicza 1 śr., 2017-10-11 09:00 8910PLN / 4170PLN
PostgreSQL for Administrators Gdynia, ul. Ejsmonda 2 śr., 2017-10-11 09:00 12326PLN / 4235PLN
Programowanie w języku C++ Bielsko-Biała, Al. Armii Krajowej 220 pon., 2017-10-16 09:00 5445PLN / 3565PLN
Programowanie w języku C++ Łódź, ul. Tatrzańska 11 pon., 2017-10-16 09:00 5445PLN / 3315PLN
Agile w projektach zdalnych Katowice ul. Opolska 22 pon., 2017-10-16 09:00 5049PLN / 1962PLN
PostgreSQL Administration Łódź, ul. Tatrzańska 11 wt., 2017-10-17 09:00 7821PLN / 3807PLN
Trening radzenie sobie ze stresem Gdynia, ul. Ejsmonda 2 śr., 2017-10-18 09:00 5148PLN / 1530PLN
Business Analysis Kraków, ul. Rzemieślnicza 1 śr., 2017-10-18 09:00 7722PLN / 3774PLN
Nginx konfiguracja i Administracja Wrocław, ul.Ludwika Rydygiera 2a/22 śr., 2017-10-18 09:00 6930PLN / 2700PLN
Programowanie w C# Wrocław, ul.Ludwika Rydygiera 2a/22 śr., 2017-10-18 09:00 4851PLN / 1870PLN
Projektowanie stron na urządzenia mobilne Kielce, ul. Warszawska 19 czw., 2017-10-19 09:00 2624PLN / 1305PLN
Adobe InDesign Wrocław, ul.Ludwika Rydygiera 2a/22 pon., 2017-10-23 09:00 1881PLN / 1027PLN
Adobe Premiere Pro Gdynia, ul. Ejsmonda 2 pon., 2017-10-23 09:00 3960PLN / 2480PLN
Administracja systemu Linux Gdynia, ul. Ejsmonda 2 wt., 2017-10-24 09:00 4950PLN / 3225PLN
Microsoft Office Excel - efektywna praca z arkuszem Warszawa, ul. Złota 3/11 czw., 2017-10-26 09:00 2475PLN / 1225PLN
Node.js Olsztyn, ul. Kajki 3/1 czw., 2017-10-26 09:00 3861PLN / 2431PLN
Microsoft Office Excel - analiza statystyczna Warszawa, ul. Złota 3/11 czw., 2017-11-02 09:00 2673PLN / 1291PLN
SQL Advanced in MySQL Warszawa, ul. Złota 3/11 czw., 2017-11-02 09:00 1881PLN / 1141PLN
Android - Podstawy Wrocław, ul.Ludwika Rydygiera 2a/22 pon., 2017-11-06 09:00 9801PLN / 4180PLN
Java Spring Wrocław, ul.Ludwika Rydygiera 2a/22 pon., 2017-11-06 09:00 14414PLN / 5970PLN
Kontrola jakości i ciągła integracja Wrocław, ul.Ludwika Rydygiera 2a/22 wt., 2017-11-07 09:00 2673PLN / 1737PLN
Nagios Core Gdańsk, ul. Powstańców Warszawskich 45 pon., 2017-11-13 09:00 13919PLN / 4968PLN
Oracle 11g - Analiza danych - warsztaty Gdynia, ul. Ejsmonda 2 pon., 2017-11-13 09:00 9900PLN / 4664PLN
ADO.NET 4.0 Development Warszawa, ul. Złota 3/11 wt., 2017-11-14 09:00 20176PLN / 6914PLN

Newsletter z promocjami

Zapisz się na nasz newsletter i otrzymuj informacje o aktualnych zniżkach na kursy otwarte.
Szanujemy Twoją prywatność, dlatego Twój e-mail będzie wykorzystywany jedynie w celu wysyłki naszego newslettera, nie będzie udostępniony ani sprzedany osobom trzecim.
W dowolnej chwili możesz zmienić swoje preferencje co do otrzymywanego newslettera bądź całkowicie się z niego wypisać.

Zaufali nam