Szkolenia Sztuczna inteligencja

Szkolenia Sztuczna inteligencja

Praktyczne szkolenia Sztuczna inteligencja, Szkolenia AI, Szkolenia Artificial Intelligence, Szkolenia Synthetic Intelligence.
Szkolenie Artificial Intelligence jest dostępne jako "szkolenie stacjonarne" lub "szkolenie online na żywo".
Szkolenie stacjonarne może odbywać się lokalnie w siedzibie klienta w Polsce lub w ośrodkach szkoleniowych NobleProg w Polsce. Zdalne szkolenie online odbywa się za pomocą interaktywnego, zdalnego pulpitu.

NobleProg -- Twój lokalny dostawca szkoleń.

Opinie uczestników

★★★★★
★★★★★

Plany szkoleń z technologii AI

Nazwa kursu
Czas trwania
Opis
Nazwa kursu
Czas trwania
Opis
7 godzin
Opis
Kurs ten został stworzony dla menadżerów, architektów, analityków biznesowych i systemowych, menedżerów oprogramowania oraz wszystkich zainteresowanych przeglądem stosowania sztucznej inteligencji i prognozą dla jej rozwoju.
21 godzin
Opis
This course uses a practical approach to teaching OptaPlanner. It provides participants with the tools needed to perform the basic functions of this tool.
28 godzin
Opis
This four day course is aimed at teaching how genetic algorithms work; it also covers how to select model parameters of a genetic algorithm; there are many applications for genetic algorithms in this course and optimization problems are tackled with the genetic algorithms.
7 godzin
Opis
This is a classroom based training session in a presentation and Q&A format
14 godzin
Opis
This instructor-led, live training in w Polsce (online or onsite) is aimed at technical persons who wish to set up or extend an RPA system with more intelligent capabilities.

By the end of this training, participants will be able to:

- Install and configure UiPath IPA.
- Enable robots to manage other robots.
- Apply computer vision to locate screen objects with accuracy.
- Enable robots that can detect language patterns and carry out sentiment analysis on unstructured content.
14 godzin
Opis
This instructor-led, live training in w Polsce (online or onsite) is aimed at software testers who wish to have an AI driven software testing environment.

By the end of this training, participants will be able to:

- Automate unit test generation and parameterization with AI.
- Apply machine learning learning in a real world use-case.
- Automate the generation and maintenance of API tests with AI.
- Use machine learning methods to self-heal the execution of Selenium tests.
35 godzin
Opis
This is a 5 day introduction to Data Science and Artificial Intelligence (AI).

The course is delivered with examples and exercises using Python
7 godzin
Opis
This instructor-led, live training in w Polsce (online or onsite) is aimed at marketers who wish to use AI to improve improve digital marketing strategies through valuable customer insights.

By the end of this training, participants will be able to:

- Leverage AI software to improve the way brands connect to users.
- Use chatbots to optimize the user-experience.
- Increase productivity and revenue through the automation of tasks.
14 godzin
Opis
This instructor-led, live training in w Polsce (online or onsite) is aimed at data scientists who wish to use IBM Cloud Pak to prepare data for use in AI solutions.

By the end of this training, participants will be able to:

- Install and configure Cloud Pak for Data.
- Unify the collection, organization and analysis of data.
- Integrate Cloud Pak for Data with a variety of services to solve common business problems.
- Implement workflows for collaborating with team members on the development of an AI solution.
21 godzin
Opis
This instructor-led, live training in w Polsce (online or onsite) is aimed at engineers who wish to program and create robots through basic AI methods.

By the end of this training, participants will be able to:

- Implement filters (Kalman and particle) to enable the robot to locate moving objects in its environment.
- Implement search algorithms and motion planning.
- Implement PID controls to regulate a robot's movement within an environment.
- Implement SLAM algorithms to enable a robot to map out an unknown environment.
7 godzin
Opis
This instructor-led, live training in w Polsce (online or onsite) is aimed at managers and business leaders who wish to learn about the fundamentals of artificial intelligence and manage AI projects for their organization.

By the end of this training, participants will be able to understand AI at a technical level and strategize using their organization’s data and resources to successfully manage AI projects.
80 godzin
Opis
In this instructor-led, live training in w Polsce (online or onsite), participants will learn the different technologies, frameworks and techniques for programming different types of robots to be used in the field of nuclear technology and environmental systems.

The 4-week course is held 5 days a week. Each day is 4-hours long and consists of lectures, discussions, and hands-on robot development in a live lab environment. Participants will complete various real-world projects applicable to their work in order to practice their acquired knowledge.

The target hardware for this course will be simulated in 3D through simulation software. The code will then be loaded onto physical hardware (Arduino or other) for final deployment testing. The ROS (Robot Operating System) open-source framework, C++ and Python will be used for programming the robots.

By the end of this training, participants will be able to:

- Understand the key concepts used in robotic technologies.
- Understand and manage the interaction between software and hardware in a robotic system.
- Understand and implement the software components that underpin robotics.
- Build and operate a simulated mechanical robot that can see, sense, process, navigate, and interact with humans through voice.
- Understand the necessary elements of artificial intelligence (machine learning, deep learning, etc.) applicable to building a smart robot.
- Implement filters (Kalman and Particle) to enable the robot to locate moving objects in its environment.
- Implement search algorithms and motion planning.
- Implement PID controls to regulate a robot's movement within an environment.
- Implement SLAM algorithms to enable a robot to map out an unknown environment.
- Test and troubleshoot a robot in realistic scenarios.
120 godzin
Opis
In this instructor-led, live training in w Polsce (online or onsite), participants will learn the different technologies, frameworks and techniques for programming different types of robots to be used in the field of nuclear technology and environmental systems.

The 6-week course is held 5 days a week. Each day is 4-hours long and consists of lectures, discussions, and hands-on robot development in a live lab environment. Participants will complete various real-world projects applicable to their work in order to practice their acquired knowledge.

The target hardware for this course will be simulated in 3D through simulation software. The ROS (Robot Operating System) open-source framework, C++ and Python will be used for programming the robots.

By the end of this training, participants will be able to:

- Understand the key concepts used in robotic technologies.
- Understand and manage the interaction between software and hardware in a robotic system.
- Understand and implement the software components that underpin robotics.
- Build and operate a simulated mechanical robot that can see, sense, process, navigate, and interact with humans through voice.
- Understand the necessary elements of artificial intelligence (machine learning, deep learning, etc.) applicable to building a smart robot.
- Implement filters (Kalman and Particle) to enable the robot to locate moving objects in its environment.
- Implement search algorithms and motion planning.
- Implement PID controls to regulate a robot's movement within an environment.
- Implement SLAM algorithms to enable a robot to map out an unknown environment.
- Extend a robot's ability to perform complex tasks through Deep Learning.
- Test and troubleshoot a robot in realistic scenarios.
7 godzin
Opis
Szkolenie skierowane jest do osób, które chcą zapoznać się z podstawami sieci neuronowych oraz ich zastosowań.
14 godzin
Opis
Szkolenie jest wprowadzeniem do wdrożenia sieci neuronowych w życiu codziennym wykorzystując oprogramowanie R-project.
14 godzin
Opis
This training course is for people that would like to apply Machine Learning in practical applications.

Audience

This course is for data scientists and statisticians that have some familiarity with statistics and know how to program R (or Python or other chosen language). The emphasis of this course is on the practical aspects of data/model preparation, execution, post hoc analysis and visualization.

The purpose is to give practical applications to Machine Learning to participants interested in applying the methods at work.

Sector specific examples are used to make the training relevant to the audience.
21 godzin
Opis
Artificial Neural Network is a computational data model used in the development of Artificial Intelligence (AI) systems capable of performing "intelligent" tasks. Neural Networks are commonly used in Machine Learning (ML) applications, which are themselves one implementation of AI. Deep Learning is a subset of ML.
35 godzin
Opis
This course is created for people who have no previous experience in probability and statistics.
14 godzin
Opis
This course covers AI (emphasizing Machine Learning and Deep Learning) in Automotive Industry. It helps to determine which technology can be (potentially) used in multiple situation in a car: from simple automation, image recognition to autonomous decision making.
28 godzin
Opis
This course will give you knowledge in neural networks and generally in machine learning algorithm, deep learning (algorithms and applications).

This training is more focus on fundamentals, but will help you to choose the right technology : TensorFlow, Caffe, Teano, DeepDrive, Keras, etc. The examples are made in TensorFlow.
21 godzin
Opis
This instructor-led, live course provides an introduction into the field of pattern recognition and machine learning. It touches on practical applications in statistics, computer science, signal processing, computer vision, data mining, and bioinformatics.

The course is interactive and includes plenty of hands-on exercises, instructor feedback, and testing of knowledge and skills acquired.
21 godzin
Opis
Artificial intelligence has revolutionized a large number of economic sectors (industry, medicine, communication, etc.) after having upset many scientific fields. Nevertheless, his presentation in the major media is often a fantasy, far removed from what really are the fields of Machine Learning or Deep Learning. The aim of this course is to provide engineers who already have a master's degree in computer tools (including a software programming base) an introduction to Deep Learning as well as to its various fields of specialization and therefore to the main existing network architectures today. If the mathematical bases are recalled during the course, a level of mathematics of type BAC + 2 is recommended for more comfort. It is absolutely possible to ignore the mathematical axis in order to maintain only a "system" vision, but this approach will greatly limit your understanding of the subject.
7 godzin
Opis
In this instructor-led, live training in w Polsce, participants will learn how to take advantage of the innovations in TPU processors to maximize the performance of their own AI applications.

By the end of the training, participants will be able to:

- Train various types of neural networks on large amounts of data.
- Use TPUs to speed up the inference process by up to two orders of magnitude.
- Utilize TPUs to process intensive applications such as image search, cloud vision and photos.
21 godzin
Opis
Microsoft Cognitive Toolkit 2.x (previously CNTK) is an open-source, commercial-grade toolkit that trains deep learning algorithms to learn like the human brain. According to Microsoft, CNTK can be 5-10x faster than TensorFlow on recurrent networks, and 2 to 3 times faster than TensorFlow for image-related tasks.

In this instructor-led, live training, participants will learn how to use Microsoft Cognitive Toolkit to create, train and evaluate deep learning algorithms for use in commercial-grade AI applications involving multiple types of data such as data, speech, text, and images.

By the end of this training, participants will be able to:

- Access CNTK as a library from within a Python, C#, or C++ program
- Use CNTK as a standalone machine learning tool through its own model description language (BrainScript)
- Use the CNTK model evaluation functionality from a Java program
- Combine feed-forward DNNs, convolutional nets (CNNs), and recurrent networks (RNNs/LSTMs)
- Scale computation capacity on CPUs, GPUs and multiple machines
- Access massive datasets using existing programming languages and algorithms

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice

Note

- If you wish to customize any part of this training, including the programming language of choice, please contact us to arrange.
21 godzin
Opis
PaddlePaddle (PArallel Distributed Deep LEarning) is a scalable deep learning platform developed by Baidu.

In this instructor-led, live training, participants will learn how to use PaddlePaddle to enable deep learning in their product and service applications.

By the end of this training, participants will be able to:

- Set up and configure PaddlePaddle
- Set up a Convolutional Neural Network (CNN) for image recognition and object detection
- Set up a Recurrent Neural Network (RNN) for sentiment analysis
- Set up deep learning on recommendation systems to help users find answers
- Predict click-through rates (CTR), classify large-scale image sets, perform optical character recognition(OCR), rank searches, detect computer viruses, and implement a recommendation system.

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
7 godzin
Opis
Snorkel is a system for rapidly creating, modeling, and managing training data. It focuses on accelerating the development of structured or "dark" data extraction applications for domains in which large labeled training sets are not available or easy to obtain.

In this instructor-led, live training, participants will learn techniques for extracting value from unstructured data such as text, tables, figures, and images through modeling of training data with Snorkel.

By the end of this training, participants will be able to:

- Programmatically create training sets to enable the labeling of massive training sets
- Train high-quality end models by first modeling noisy training sets
- Use Snorkel to implement weak supervision techniques and apply data programming to weakly-supervised machine learning systems

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 godzin
Opis
Encog is an open-source machine learning framework for Java and .Net.

In this instructor-led, live training, participants will learn advanced machine learning techniques for building accurate neural network predictive models.

By the end of this training, participants will be able to:

- Implement different neural networks optimization techniques to resolve underfitting and overfitting
- Understand and choose from a number of neural network architectures
- Implement supervised feed forward and feedback networks

Audience

- Developers
- Analysts
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 godzin
Opis
Encog is an open-source machine learning framework for Java and .Net.

In this instructor-led, live training, participants will learn how to create various neural network components using ENCOG. Real-world case studies will be discussed and machine language based solutions to these problems will be explored.

By the end of this training, participants will be able to:

- Prepare data for neural networks using the normalization process
- Implement feed forward networks and propagation training methodologies
- Implement classification and regression tasks
- Model and train neural networks using Encog's GUI based workbench
- Integrate neural network support into real-world applications

Audience

- Developers
- Analysts
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
35 godzin
Opis
This course begins with giving you conceptual knowledge in neural networks and generally in machine learning algorithm, deep learning (algorithms and applications).

Part-1(40%) of this training is more focus on fundamentals, but will help you choosing the right technology : TensorFlow, Caffe, Theano, DeepDrive, Keras, etc.

Part-2(20%) of this training introduces Theano - a python library that makes writing deep learning models easy.

Part-3(40%) of the training would be extensively based on Tensorflow - 2nd Generation API of Google's open source software library for Deep Learning. The examples and handson would all be made in TensorFlow.

Audience

This course is intended for engineers seeking to use TensorFlow for their Deep Learning projects

After completing this course, delegates will:

-

have a good understanding on deep neural networks(DNN), CNN and RNN

-

understand TensorFlow’s structure and deployment mechanisms

-

be able to carry out installation / production environment / architecture tasks and configuration

-

be able to assess code quality, perform debugging, monitoring

-

be able to implement advanced production like training models, building graphs and logging
21 godzin
Opis
Deep Reinforcement Learning refers to the ability of an "artificial agent" to learn by trial-and-error and rewards-and-punishments. An artificial agent aims to emulate a human's ability to obtain and construct knowledge on its own, directly from raw inputs such as vision. To realize reinforcement learning, deep learning and neural networks are used. Reinforcement learning is different from machine learning and does not rely on supervised and unsupervised learning approaches.

In this instructor-led, live training, participants will learn the fundamentals of Deep Reinforcement Learning as they step through the creation of a Deep Learning Agent.

By the end of this training, participants will be able to:

- Understand the key concepts behind Deep Reinforcement Learning and be able to distinguish it from Machine Learning
- Apply advanced Reinforcement Learning algorithms to solve real-world problems
- Build a Deep Learning Agent

Audience

- Developers
- Data Scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice

Nadchodzące szkolenia z technologii Sztuczna inteligencja

Szkolenie Artificial Intelligence, AI (Artificial Intelligence) boot camp, Szkolenia Zdalne Sztuczna inteligencja, szkolenie wieczorowe Sztuczna inteligencja, szkolenie weekendowe AI, Kurs Artificial Intelligence,Kursy AI, Trener AI, instruktor AI, kurs zdalny AI (Artificial Intelligence), edukacja zdalna AI, nauczanie wirtualne AI, lekcje UML, nauka przez internet Sztuczna inteligencja, e-learning Sztuczna inteligencja, kurs online AI (Artificial Intelligence), wykładowca Sztuczna inteligencja

Kursy w promocyjnej cenie

Newsletter z promocjami

We respect the privacy of your email address. We will not pass on or sell your address to others.
You can always change your preferences or unsubscribe completely.

Zaufali nam

This site in other countries/regions