Szkolenia Deep Learning

Szkolenia Deep Learning

Praktyczne szkolenia na żywo z Deep Learning (DL) demonstrują poprzez dyskusję i ćwiczenia zagadnienia Deep Learning i obejmują tematy takie jak: głębokie uczenie maszynowe, głębokie ustrukturyzowane uczenie się i hierarchiczna nauka. Szkolenie Deep Learning jest dostępne jako "szkolenie stacjonarne" lub "szkolenie online na żywo".

Szkolenie stacjonarne może odbywać się lokalnie w siedzibie klienta w Polsce lub w ośrodkach szkoleniowych NobleProg w Polsce. Zdalne szkolenie online odbywa się za pomocą interaktywnego, zdalnego pulpitu DaDesktop .

NobleProg -- Twój lokalny dostawca szkoleń.

Opinie uczestników

★★★★★
★★★★★

Plany szkoleń z technologii Deep Learning

Nazwa kursu
Czas trwania
Opis
Nazwa kursu
Czas trwania
Opis
14 godzin
Opis
Kurs obejmuje AI (kładąc nacisk na Machine Learning i Deep Learning ) w przemyśle Automotive . Pomaga określić, która technologia może być (potencjalnie) używana w wielu sytuacjach w samochodzie: od prostej automatyzacji, przez rozpoznawanie obrazów po autonomiczne podejmowanie decyzji.
14 godzin
Opis
TensorFlow.js is a JavaScript framework for machine learning. TensorFlow.js enables users to build and train machine learning models directly in JavaScript.

This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use TensorFlow.js to identify patterns and generate predictions through machine learning models.

By the end of this training, participants will be able to:

- Build and train machine learning models with TensorFlow.js.
- Run machine learning models in the browser or under Node.js.
- Retrain pre-existing machine learning models using custom data.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
14 godzin
Opis
OpenCV is a library of programming functions for deciphering images with computer algorithms. OpenCV 4 is the latest OpenCV release and it provides optimized modularity, updated algorithms, and more. With OpenCV 4 and Python, users will be able to view, load, and classify images and videos for advanced image recognition.

This instructor-led, live training (online or onsite) is aimed at software engineers who wish to program in Python with OpenCV 4 for deep learning.

By the end of this training, participants will be able to:

- View, load, and classify images and videos using OpenCV 4.
- Implement deep learning in OpenCV 4 with TensorFlow and Keras.
- Run deep learning models and generate impactful reports from images and videos.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
14 godzin
Opis
OpenFace to oparte na Pythonie i Torch oprogramowanie do rozpoznawania twarzy w czasie rzeczywistym oparte na badaniach FaceNet firmy Google W tym instruktażowym szkoleniu na żywo uczestnicy dowiedzą się, jak używać komponentów OpenFace do tworzenia i wdrażania przykładowej aplikacji rozpoznawania twarzy Pod koniec tego szkolenia uczestnicy będą mogli: Pracuj z komponentami OpenFace, w tym dlib, OpenVC, Latarka i nn4, aby zaimplementować wykrywanie twarzy, wyrównanie i transformację Zastosuj OpenFace do aplikacji realworld, takich jak nadzór, weryfikacja tożsamości, wirtualna rzeczywistość, gry i identyfikacja powtarzających się klientów itp Publiczność Deweloperzy Data naukowcy Format kursu Wykład częściowy, dyskusja częściowa, ćwiczenia i ciężka praktyka handson .
7 godzin
Opis
W tym prowadzonym przez instruktora szkoleniu na żywo uczestnicy dowiedzą się, jak skonfigurować i używać OpenNMT do wykonywania tłumaczeń różnych przykładowych zestawów danych. Kurs rozpoczyna się od przeglądu sieci neuronowych w odniesieniu do tłumaczenia maszynowego. Uczestnicy przeprowadzą na żywo ćwiczenia w trakcie kursu, aby zademonstrować zrozumienie poznanych pojęć i uzyskać informacje zwrotne od instruktora.

Pod koniec tego szkolenia uczestnicy będą mieli wiedzę i praktykę potrzebną do wdrożenia rozwiązania OpenNMT żywo.

Próbki języka źródłowego i docelowego zostaną wstępnie ustawione zgodnie z wymaganiami odbiorców.

Format kursu

- Wykład częściowy, dyskusja częściowa, ciężka praktyka praktyczna
14 godzin
Opis
OpenNN jest biblioteką klasy open-source napisaną w C ++, która implementuje sieci neuronowe, do wykorzystania w uczeniu maszynowym.

W tym kursie omawiamy zasady sieci neuronowych i wykorzystujemy OpenNN do implementacji przykładowej aplikacji.

Publiczność
Twórcy oprogramowania i programiści, którzy chcą tworzyć aplikacje Deep Learning.

Format kursu
Wykład i dyskusja połączone z praktycznymi ćwiczeniami.
21 godzin
Opis
PaddlePaddle (PArallel Distributed Deep Learning) to skalowalna platforma do głębokiego uczenia się opracowana przez Baidu W tym instruktażowym szkoleniu na żywo uczestnicy dowiedzą się, jak korzystać z PaddlePaddle, aby umożliwić głębokie uczenie się w swoich produktach i usługach Pod koniec tego szkolenia uczestnicy będą mogli: Skonfiguruj i skonfiguruj PaddlePaddle Stwórz Convolutional Neural Network (CNN) do rozpoznawania obrazów i wykrywania obiektów Skonfiguruj powtarzalną sieć neuronową (RNN) do analizy sentymentów Skonfiguruj głęboką naukę w systemach rekomendacji, aby pomóc użytkownikom znaleźć odpowiedzi Przewidzieć współczynniki klikalności (CTR), klasyfikować zbiory obrazów wielkoskalowych, wykonywać optyczne rozpoznawanie znaków (OCR), wyszukiwać w rankingu, wykrywać wirusy komputerowe i wdrażać system rekomendacji Publiczność Deweloperzy Data naukowcy Format kursu Wykład częściowy, dyskusja częściowa, ćwiczenia i ciężka praktyka handson .
21 godzin
Opis
W tym instruktażowym szkoleniu na żywo uczestnicy poznają najbardziej odpowiednie i najdoskonalsze techniki uczenia maszynowego w Pythonie, ponieważ tworzą serię aplikacji demonstracyjnych obejmujących obraz, muzykę, tekst i dane finansowe Pod koniec tego szkolenia uczestnicy będą mogli: Zaimplementuj algorytmy uczenia maszynowego i techniki rozwiązywania złożonych problemów Zastosuj głębokie uczenie się i nauczanie półinstruowane w aplikacjach wykorzystujących obraz, muzykę, tekst i dane finansowe Pchnij algorytmy Pythona do ich maksymalnego potencjału Używaj bibliotek i pakietów, takich jak NumPy i Theano Publiczność Deweloperzy Analitycy Data naukowcy Format kursu Wykład częściowy, dyskusja częściowa, ćwiczenia i ciężka praktyka handson .
21 godzin
Opis
Podczas tego instruktażowego szkolenia na żywo uczestnicy poznają zaawansowane techniki uczenia maszynowego z R, gdy będą przechodzić przez tworzenie aplikacji realworld Pod koniec tego szkolenia uczestnicy będą mogli: Użyj technik jako strojenia hiperparametrowego i głębokiego uczenia się Zrozum i wdrażaj nienadzorowane techniki uczenia się Wprowadź model do produkcji do użycia w większej aplikacji Publiczność Deweloperzy Analitycy Data naukowcy Format kursu Wykład częściowy, dyskusja częściowa, ćwiczenia i ciężka praktyka handson .
21 godzin
Opis
Głębokie uczenie się jest dziedziną uczenia maszynowego. Wykorzystuje metody oparte na uczeniu się reprezentacji danych i struktur, takich jak sieci neuronowe.

Keras to interfejs API sieci neuronowych wysokiego poziomu do szybkiego programowania i eksperymentowania. Działa na TensorFlow , CNTK lub Theano.

Szkolenie na żywo prowadzone przez instruktora (na miejscu lub zdalnie) jest przeznaczone dla programistów, którzy chcą zbudować samochód z własnym napędem, stosując techniki głębokiego uczenia się.

Pod koniec tego szkolenia uczestnicy będą mogli:

- Użyj technik widzenia komputerowego, aby zidentyfikować pasy.
- Użyj Keras do budowy i szkolenia splotowych sieci neuronowych.
- Trenuj model głębokiego uczenia się, aby odróżniać znaki drogowe.
- Symuluj w pełni autonomiczny samochód.

Format kursu

- Interaktywny wykład i dyskusja.
- Dużo ćwiczeń i ćwiczeń.
- Praktyczne wdrożenie w środowisku na żywo.

Opcje dostosowywania kursu

- Aby poprosić o niestandardowe szkolenie dla tego kursu, skontaktuj się z nami w celu umówienia się.
21 godzin
Opis
SINGA jest ogólną rozproszoną platformą do głębokiego uczenia się do szkolenia dużych modeli głębokiego uczenia się na dużych zestawach danych. Został zaprojektowany z intuicyjnym modelem programowania opartym na abstrakcji warstwy. Obsługiwane są różne popularne modele głębokiego uczenia się, a mianowicie modele sprzężenia zwrotnego, w tym splotowe sieci neuronowe (CNN), modele energetyczne, takie jak ograniczona maszyna Boltzmanna (RBM), oraz powtarzające się sieci neuronowe (RNN). Wiele wbudowanych warstw jest dostępnych dla użytkowników. Architektura SINGA jest wystarczająco elastyczna, aby uruchamiać synchroniczne, asynchroniczne i hybrydowe struktury szkoleniowe. SINGA obsługuje również różne schematy partycjonowania sieci neuronowych w celu równoległego szkolenia dużych modeli, a mianowicie partycjonowania w wymiarze partii, wymiaru cech lub partycjonowania hybrydowego.

Publiczność

Ten kurs jest skierowany do naukowców, inżynierów i programistów, którzy chcą wykorzystać Apache SINGA jako Apache SINGA do głębokiego uczenia się.

Po ukończeniu tego kursu delegaci:

- zrozumieć strukturę i mechanizmy wdrażania SINGA
- być w stanie wykonać zadania i konfigurację środowiska instalacji / produkcji / architektury
- być w stanie ocenić jakość kodu, przeprowadzić debugowanie, monitorowanie
- być w stanie wdrożyć zaawansowaną produkcję, taką jak modele treningowe, terminy osadzania, wykresy budowlane i rejestrowanie
7 godzin
Opis
Tensor2Tensor (T2T) to modułowa, rozszerzalna biblioteka do szkolenia modeli sztucznej inteligencji w różnych zadaniach, wykorzystująca różne typy danych szkoleniowych, na przykład: rozpoznawanie obrazu, tłumaczenie, analizowanie, podpisywanie obrazów i rozpoznawanie mowy Jest utrzymywany przez zespół Google Brain W tym instruktażowym szkoleniu na żywo uczestnicy dowiedzą się, jak przygotować model głęboki, aby rozwiązać wiele zadań Pod koniec tego szkolenia uczestnicy będą mogli: Zainstaluj tensor2tensor, wybierz zestaw danych i trenuj i oceniaj model sztucznej inteligencji Dostosuj środowisko programistyczne za pomocą narzędzi i komponentów zawartych w Tensor2Tensor Utwórz i używaj jednego modelu do jednoczesnego uczenia się wielu zadań z wielu domen Użyj modelu, aby uczyć się na zadaniach z dużą ilością danych szkoleniowych i zastosować tę wiedzę do zadań, w których dane są ograniczone Uzyskaj satysfakcjonujące wyniki przetwarzania za pomocą pojedynczego procesora graficznego Publiczność Deweloperzy Data naukowcy Format kursu Wykład częściowy, dyskusja częściowa, ćwiczenia i ciężka praktyka handson .
21 godzin
Opis
TensorFlow to popularna biblioteka do uczenia maszynowego opracowana przez Go ogle do głębokiego uczenia się, obliczeń numerycznych i uczenia maszynowego na dużą skalę. TensorFlow 2.0, wydany w styczniu 2019 r., Jest najnowszą wersją TensorFlow i zawiera ulepszenia w TensorFlow wykonywaniu, kompatybilności i spójności API.

Szkolenie na żywo prowadzone przez instruktora (na miejscu lub zdalnie) jest przeznaczone dla programistów i badaczy danych, którzy chcą korzystać z Tensorflow 2.0 do budowania predyktorów, klasyfikatorów, modeli generatywnych, sieci neuronowych i tak dalej.

Pod koniec tego szkolenia uczestnicy będą mogli:

- Zainstaluj i skonfiguruj TensorFlow 2.0.
- TensorFlow zalety TensorFlow 2.0 w porównaniu z poprzednimi wersjami.
- Twórz modele głębokiego uczenia się.
- Zaimplementuj zaawansowany klasyfikator obrazów.
- Wdróż model głębokiego uczenia się w chmurze, urządzeniach mobilnych i IoT.

Format kursu

- Interaktywny wykład i dyskusja.
- Dużo ćwiczeń i ćwiczeń.
- Praktyczne wdrożenie w środowisku na żywo.

Opcje dostosowywania kursu

- Aby poprosić o niestandardowe szkolenie dla tego kursu, skontaktuj się z nami w celu umówienia się.
- Aby dowiedzieć się więcej o TensorFlow , odwiedź: https://www.tensorflow.org/
21 godzin
Opis
TensorFlow Lite is an open source deep learning framework for executing models on mobile and embedded devices with limited compute and memory resources.

This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to deploy deep learning models on embedded devices.

By the end of this training, participants will be able to:

- Install and configure Tensorflow Lite on an embedded device.
- Understand the concepts and components underlying TensorFlow Lite.
- Convert existing machine learning models to TensorFlow Lite format for execution on embedded devices.
- Work within the limitations of small devices and TensorFlow Lite, while learning how to expand their default capabilities.
- Deploy deep learning models on embedded devices running Linux to solve physical world problems such as recognizing images and voice, predicting patterns, and initiating movements and responses from robots and other embedded systems in the field.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
28 godzin
Opis
Ten kurs daje wiedzę na temat sieci neuronowych i ogólnie algorytmu uczenia maszynowego, głębokiego uczenia się (algorytmy i aplikacje).

To szkolenie bardziej koncentruje się na podstawach, ale pomoże ci wybrać odpowiednią technologię: TensorFlow , Caffe , Teano, DeepDrive, Keras itp. Przykłady zostały wykonane w TensorFlow .
21 godzin
Opis
TensorFlow Lite is an open source deep learning framework for mobile devices and embedded systems.

This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop mobile applications with deep learning capabilities.

By the end of this training, participants will be able to:

- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow, machine learning and deep learning.
- Load TensorFlow Models onto an Android device.
- Enable deep learning and machine learning functionality such as computer vision and natural language recognition in a mobile application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
- To learn more about TensorFlow, please visit: https://www.tensorflow.org/lite/
21 godzin
Opis
TensorFlow Lite is an open source deep learning framework for mobile devices and embedded systems.

This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop iOS mobile applications with deep learning capabilities.

By the end of this training, participants will be able to:

- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow and machine learning on mobile devices.
- Load TensorFlow Models onto an iOS device.
- Run an iOS application capable of detecting and classifying an object captured through the device's camera.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 godzin
Opis
TensorFlow Lite for Microcontrollers is a port of TensorFlow Lite designed to run machine learning models on microcontrollers and other devices with limited memory.

This instructor-led, live training (online or onsite) is aimed at engineers who wish to write, load and run machine learning models on very small embedded devices.

By the end of this training, participants will be able to:

- Install TensorFlow Lite.
- Load machine learning models onto an embedded device to enable it to detect speech, classify images, etc.
- Add AI to hardware devices without relying on network connectivity.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
7 godzin
Opis
TensorFlow Serving to system do obsługi modeli uczenia maszynowego (ML) do produkcji W tym instruktażowym szkoleniu na żywo uczestnicy dowiedzą się, jak skonfigurować i używać TensorFlow Serving do wdrażania i zarządzania modelami ML w środowisku produkcyjnym Pod koniec tego szkolenia uczestnicy będą mogli: Trenuj, eksportuj i obsługuj różne modele TensorFlow Testuj i wdrażaj algorytmy za pomocą pojedynczej architektury i zestawu interfejsów API Rozszerz obsługę TensorFlow, aby obsługiwać inne typy modeli poza modelami TensorFlow Publiczność Deweloperzy Data naukowcy Format kursu Wykład częściowy, dyskusja częściowa, ćwiczenia i ciężka praktyka handson .
21 godzin
Opis
TensorFlow jest 2nd Generation API Go otwartej biblioteki oprogramowania źródłowego OGLE za Deep Learning . System został zaprojektowany w celu ułatwienia badań nad uczeniem maszynowym oraz w celu szybkiego i łatwego przejścia od prototypu badawczego do systemu produkcyjnego.

Publiczność

Ten kurs jest przeznaczony dla inżynierów, którzy chcą używać TensorFlow do swoich projektów Deep Learning

Po ukończeniu tego kursu delegaci:

- zrozumieć strukturę i mechanizmy wdrażania TensorFlow
- być w stanie wykonać zadania i konfigurację środowiska instalacji / produkcji / architektury
- być w stanie ocenić jakość kodu, przeprowadzić debugowanie, monitorowanie
- być w stanie wdrożyć zaawansowaną produkcję, taką jak modele treningowe, wykresy budowlane i rejestrowanie
28 godzin
Opis
Ten kurs omawia, wraz z konkretnymi przykładami, zastosowanie Tensor Flow do celów rozpoznawania obrazów

Publiczność

Ten kurs jest przeznaczony dla inżynierów, którzy chcą wykorzystać TensorFlow do celów rozpoznawania obrazów

Po ukończeniu tego kursu delegaci będą mogli:

- zrozumieć strukturę i mechanizmy wdrażania TensorFlow
- wykonać zadania i konfigurację środowiska instalacji / produkcji / architektury
- ocenić jakość kodu, przeprowadzić debugowanie, monitorowanie
- wdrożyć zaawansowaną produkcję, taką jak modele treningowe, wykresy budowlane i rejestrowanie
21 godzin
Opis
TensorFlow Extended (TFX) is an end-to-end platform for deploying production ML pipelines.

This instructor-led, live training (online or onsite) is aimed at data scientists who wish to go from training a single ML model to deploying many ML models to production.

By the end of this training, participants will be able to:

- Install and configure TFX and supporting third-party tools.
- Use TFX to create and manage a complete ML production pipeline.
- Work with TFX components to carry out modeling, training, serving inference, and managing deployments.
- Deploy machine learning features to web applications, mobile applications, IoT devices and more.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 godzin
Opis
Torch jest biblioteką uczenia maszynowego typu open source i naukowym środowiskiem komputerowym opartym na języku programowania Lua . Zapewnia środowisko programistyczne dla liczb, uczenia maszynowego i wizji komputerowej, ze szczególnym naciskiem na głębokie uczenie się i sieci splotowe. Jest to jedna z najszybszych i najbardziej elastycznych platform dla Deep Learning maszynowego i Deep Learning i jest używana przez firmy takie jak Facebook , Go ogle, Twitter, NVIDIA, AMD, Intel i wiele innych.

W tym instruktażowym szkoleniu na żywo omawiamy zasady Torch , jej unikalne cechy oraz sposób, w jaki można ją stosować w aplikacjach rzeczywistych. Przez cały czas przechodzimy przez wiele praktycznych ćwiczeń, demonstrując i ćwicząc nabyte pojęcia.

Do końca kursu uczestnicy będą dokładnie rozumieć podstawowe cechy i możliwości Torch , a także jej rolę i wkład w przestrzeń sztucznej inteligencji w porównaniu z innymi strukturami i bibliotekami. Uczestnicy otrzymają również praktykę niezbędną do wdrożenia Torch we własnych projektach.

Format kursu

- Przegląd maszyn i Deep Learning
- Ćwiczenia z kodowania i integracji w klasie
- Pytania testowe posypane po drodze, aby sprawdzić zrozumienie
7 godzin
Opis
The Tensor Processing Unit (TPU) is the architecture which Google has used internally for several years, and is just now becoming available for use by the general public. It includes several optimizations specifically for use in neural networks, including streamlined matrix multiplication, and 8-bit integers instead of 16-bit in order to return appropriate levels of precision.

In this instructor-led, live training, participants will learn how to take advantage of the innovations in TPU processors to maximize the performance of their own AI applications.

By the end of the training, participants will be able to:

- Train various types of neural networks on large amounts of data.
- Use TPUs to speed up the inference process by up to two orders of magnitude.
- Utilize TPUs to process intensive applications such as image search, cloud vision and photos.

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
35 godzin
Opis
TensorFlow ™ to biblioteka oprogramowania typu open source do obliczeń numerycznych z wykorzystaniem wykresów przepływu danych.

SyntaxNet to neuronowa sieć przetwarzania języka naturalnego dla TensorFlow .

Word 2Vec służy do uczenia wektorowych reprezentacji słów, zwanych „osadzaniem słów”. Word 2vec jest szczególnie wydajnym obliczeniowo modelem predykcyjnym do nauki osadzania słów z surowego tekstu. Występuje w dwóch wariantach: modelu Continuous Bag-of- Word (CBOW) i Skip-Gram (rozdział 3.1 i 3.2 w Mikolov i in.).

Używany w tandemie SyntaxNet i Word 2Vec umożliwia użytkownikom generowanie modeli Learned Embedding z wejścia Natural Language.

Publiczność

Kurs jest skierowany do programistów i inżynierów, którzy zamierzają pracować z modelami SyntaxNet i Word 2Vec w swoich wykresach TensorFlow .

Po ukończeniu tego kursu delegaci:

- zrozumieć strukturę i mechanizmy wdrażania TensorFlow
- być w stanie wykonać zadania i konfigurację środowiska instalacji / produkcji / architektury
- być w stanie ocenić jakość kodu, przeprowadzić debugowanie, monitorowanie
- być w stanie wdrożyć zaawansowaną produkcję, taką jak modele treningowe, terminy osadzania, wykresy budowlane i rejestrowanie
35 godzin
Opis
Kurs rozpoczyna się od przekazania wiedzy pojęciowej w sieciach neuronowych i ogólnie w algorytmie uczenia maszynowego, głębokiego uczenia się (algorytmy i aplikacje).

Część 1 (40%) tego szkolenia skupia się bardziej na podstawach, ale pomoże ci wybrać odpowiednią technologię: TensorFlow , Caffe , Theano, DeepDrive, Keras itp.

Część 2 (20%) tego szkolenia przedstawia Theano - bibliotekę Pythona, która ułatwia pisanie modeli głębokiego uczenia.

Część 3 (40%) szkolenia byłaby w dużej mierze oparta na Tensorflow - API drugiej generacji biblioteki oprogramowania open source Go ogle dla Deep Learning . Wszystkie przykłady i wskazówki powstałyby w TensorFlow .

Publiczność

Ten kurs jest przeznaczony dla inżynierów, którzy chcą korzystać z TensorFlow w swoich projektach Deep Learning

Po ukończeniu tego kursu uczestnicy:

-

dobrze rozumie głębokie sieci neuronowe (DNN), CNN i RNN

-

zrozumieć strukturę i mechanizmy wdrażania TensorFlow

-

być w stanie wykonywać zadania związane z instalacją / produkcją / architekturą / konfiguracją

-

być w stanie ocenić jakość kodu, przeprowadzić debugowanie, monitorowanie

-

być w stanie wdrożyć zaawansowaną produkcję, taką jak modele szkoleniowe, tworzenie wykresów i rejestrowanie
14 godzin
Opis
Video analytics refers to the technology and techniques used to process a video stream. A common application would be capturing and identifying live video events through motion detection, facial recognition, crowd and vehicle counting, etc.

This instructor-led, live training (online or onsite) is aimed at developers who wish to build hardware-accelerated object detection and tracking models to analyze streaming video data.

By the end of this training, participants will be able to:

- Install and configure the necessary development environment, software and libraries to begin developing.
- Build, train, and deploy deep learning models to analyze live video feeds.
- Identify, track, segment and predict different objects within video frames.
- Optimize object detection and tracking models.
- Deploy an intelligent video analytics (IVA) application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
14 godzin
Opis
Ta sesja szkoleniowa oparta na zajęciach będzie zawierać prezentacje i przykłady oparte na komputerach oraz ćwiczenia studium przypadku, które należy przeprowadzić z odpowiednimi bibliotekami sieci neuronowych i głębokich
21 godzin
Opis
MXNet is a flexible, open-source Deep Learning library that is popular for research prototyping and production. Together with the high-level Gluon API interface, Apache MXNet is a powerful alternative to TensorFlow and PyTorch.

This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use Apache MXNet to build and deploy a deep learning model for image recognition.

By the end of this training, participants will be able to:

- Install and configure Apache MXNet and its components.
- Understand MXNet's architecture and data structures.
- Use Apache MXNet's low-level and high-level APIs to efficiently build neural networks.
- Build a convolutional neural network for image classification.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 godzin
Opis
Sztuczna sieć neuronowa jest obliczeniowym modelem danych wykorzystywanym w rozwoju systemów Artificial Intelligence (AI) zdolnych do wykonywania „inteligentnych” zadań. Neural Networks są powszechnie stosowane w aplikacjach Machine Learning (ML), które same są implementacją AI. Deep Learning jest podzbiorem ML.
Szkolenie Deep Learning, Deep Learning (DL) boot camp, Szkolenia Zdalne Deep Learning (DL), szkolenie wieczorowe Deep Learning, szkolenie weekendowe Deep Learning (DL), Kurs Deep Learning (DL),Kursy DL (Deep Learning), Trener Deep Learning, instruktor Deep Learning (DL), kurs zdalny DL (Deep Learning), edukacja zdalna Deep Learning, nauczanie wirtualne DL (Deep Learning), lekcje UML, nauka przez internet Deep Learning (DL), e-learning DL (Deep Learning), kurs online Deep Learning (DL), wykładowca Deep Learning (DL)

Kursy w promocyjnej cenie

Newsletter z promocjami

Zapisz się na nasz newsletter i otrzymuj informacje o aktualnych zniżkach na kursy otwarte.
Szanujemy Twoją prywatność, dlatego Twój e-mail będzie wykorzystywany jedynie w celu wysyłki naszego newslettera, nie będzie udostępniony ani sprzedany osobom trzecim.
W dowolnej chwili możesz zmienić swoje preferencje co do otrzymywanego newslettera bądź całkowicie się z niego wypisać.

Zaufali nam

is growing fast!

We are looking to expand our presence in Poland!

As a Business Development Manager you will:

  • expand business in Poland
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!

This site in other countries/regions