TPU Programming: Building Neural Network Applications on Tensor Processing Units - Plan Szkolenia
Tensor Processing Unit (TPU) to architektura, z której Google korzysta wewnętrznie od kilku lat, a która dopiero teraz staje się dostępna do powszechnego użytku. Obejmuje ona kilka optymalizacji specjalnie do użytku w sieciach neuronowych, w tym usprawnione mnożenie macierzy i 8-bitowe liczby całkowite zamiast 16-bitowych w celu zwrócenia odpowiednich poziomów precyzji.
W tym instruktażowym szkoleniu na żywo uczestnicy dowiedzą się, jak wykorzystać innowacje w procesorach TPU, aby zmaksymalizować wydajność własnych aplikacji AI.
Po zakończeniu szkolenia uczestnicy będą w stanie
- Trenowanie różnych typów sieci neuronowych na dużych ilościach danych.
- Wykorzystanie procesorów TPU do przyspieszenia procesu wnioskowania nawet o dwa rzędy wielkości.
- Wykorzystanie procesorów TPU do przetwarzania intensywnych aplikacji, takich jak wyszukiwanie obrazów, widzenie w chmurze i zdjęcia.
Format kursu
- Część wykładu, część dyskusji, ćwiczenia i ciężka praktyka praktyczna
Plan Szkolenia
Aby poprosić o indywidualny zarys kursu dla tego szkolenia, skontaktuj się z nami.
Wymagania
- Znajomość architektury sieci neuronowych przy użyciu tensorflow
Uczestnicy
- Deweloperzy
- Badacze
- Inżynierowie
- Naukowcy danych
Szkolenia otwarte są realizowane w przypadku uzbierania się grupy szkoleniowej liczącej co najmniej 5 osób na dany termin.
TPU Programming: Building Neural Network Applications on Tensor Processing Units - Plan Szkolenia - Booking
TPU Programming: Building Neural Network Applications on Tensor Processing Units - Plan Szkolenia - Enquiry
TPU Programming: Building Neural Network Applications on Tensor Processing Units - Zapytanie o Konsultacje
Zapytanie o Konsultacje
Opinie uczestników (5)
Trener wyjaśnił treść dobrze i był zaangażowany przez cały czas. Zatrzymywał się, aby zadać pytania, i pozwolił nam samodzielnie dojść do rozwiązań w niektórych praktycznych sesjach. Dojść do rozwiązań w niektórych praktycznych sesjach. Ponadto dostosował kurs do naszych potrzeb.
Robert Baker
Szkolenie - Deep Learning with TensorFlow 2.0
Przetłumaczone przez sztuczną inteligencję
Tomasz naprawdę dobrze znał informacje i kurs był dobrze dobrany.
Raju Krishnamurthy - Google
Szkolenie - TensorFlow Extended (TFX)
Przetłumaczone przez sztuczną inteligencję
Organizacja, przestrzegając proponowanego porządku obrad, wiedza trenera w tej dziedzinie
Ali Kattan - TWPI
Szkolenie - Natural Language Processing with TensorFlow
Przetłumaczone przez sztuczną inteligencję
Dużo wskazówek praktycznych
Pawel Dawidowski - ABB Sp. z o.o.
Szkolenie - Deep Learning with TensorFlow
Duża wiedza teoretyczna i praktyczna prowadzących. Komunikatywność prowadzących. W trakcie kursu można było zadawać pytania i uzyskać satysfakcjonujące odpowiedzi.
Kamil Kurek - ING Bank Slaski S.A.; Kamil Kurek Programowanie
Szkolenie - Understanding Deep Neural Networks
Propozycje terminów
Szkolenia Powiązane
Artificial Intelligence (AI) in Automotive
14 godzinKurs obejmuje sztuczną inteligencję (z naciskiem na Machine Learning i głębokie uczenie) w przemyśle motoryzacyjnym. Pomaga określić, która technologia może być (potencjalnie) wykorzystywana w wielu sytuacjach w samochodzie: od prostej automatyzacji, rozpoznawania obrazu po autonomiczne podejmowanie decyzji.
Artificial Intelligence Overview
7 godzinKurs ten został stworzony dla menadżerów, architektów, analityków biznesowych i systemowych, menedżerów oprogramowania oraz wszystkich zainteresowanych przeglądem stosowania sztucznej inteligencji i prognozą dla jej rozwoju.
Applied AI from Scratch
28 godzinJest to 4-dniowy kurs wprowadzający w sztuczną inteligencję i jej zastosowanie. Istnieje możliwość odbycia dodatkowego dnia w celu podjęcia projektu AI po ukończeniu tego kursu.
Computer Vision with Google Colab and TensorFlow
21 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla zaawansowanych profesjonalistów, którzy chcą pogłębić swoją wiedzę na temat wizji komputerowej i poznać możliwości TensorFlow w zakresie opracowywania zaawansowanych modeli wizyjnych przy użyciu Google Colab.
Pod koniec tego szkolenia uczestnicy będą w stanie
- Budować i trenować konwolucyjne sieci neuronowe (CNN) przy użyciu TensorFlow.
- Wykorzystać Google Colab do skalowalnego i wydajnego rozwoju modeli opartych na chmurze.
- Wdrażać techniki wstępnego przetwarzania obrazu dla zadań wizji komputerowej.
- Wdrażanie modeli wizji komputerowej do rzeczywistych zastosowań.
- Wykorzystanie uczenia transferowego w celu zwiększenia wydajności modeli CNN.
- Wizualizacja i interpretacja wyników modeli klasyfikacji obrazów.
Deep Learning with TensorFlow in Google Colab
14 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla średnio zaawansowanych naukowców zajmujących się danymi i programistów, którzy chcą zrozumieć i zastosować techniki głębokiego uczenia się przy użyciu środowiska Google Colab.
Pod koniec tego szkolenia uczestnicy będą w stanie
- Konfigurować i nawigować Google Colab dla projektów głębokiego uczenia.
- Zrozumieć podstawy sieci neuronowych.
- Implementować modele głębokiego uczenia się przy użyciu TensorFlow.
- Trenować i oceniać modele głębokiego uczenia.
- Wykorzystywać zaawansowane funkcje TensorFlow do głębokiego uczenia.
Deep Learning for NLP (Natural Language Processing)
28 godzinW tym instruktażowym szkoleniu na żywo w Polsce uczestnicy nauczą się korzystać z Python bibliotek dla NLP, tworząc aplikację, która przetwarza zestaw zdjęć i generuje podpisy.
Po zakończeniu tego szkolenia uczestnicy będą w stanie
- Projektowanie i kodowanie DL dla NLP przy użyciu Python bibliotek.
- Tworzenie Python kodu, który odczytuje ogromną kolekcję zdjęć i generuje słowa kluczowe.
- Stwórz Pythonkod, który generuje podpisy na podstawie wykrytych słów kluczowych.
Deep Learning for Vision
21 godzinUczestnicy
Ten kurs jest odpowiedni dla Deep Learning badaczy i inżynierów zainteresowanych wykorzystaniem dostępnych narzędzi (głównie open source) do analizy obrazów komputerowych
Ten kurs zawiera działające przykłady.
Fraud Detection with Python and TensorFlow
14 godzinSzkolenie na żywo prowadzone przez instruktora (na miejscu lub zdalnie) jest przeznaczone dla analityków danych, którzy chcą wykorzystać TensorFlow do analizy danych dotyczących potencjalnych oszustw.
Po zakończeniu tego szkolenia uczestnicy będą w stanie
- Stworzyć model wykrywania oszustw w Python i TensorFlow.
- Zbudować regresje liniowe i modele regresji liniowej do przewidywania oszustw.
- Opracować kompleksową aplikację AI do analizy danych dotyczących oszustw.
Deep Learning with TensorFlow 2
21 godzinSzkolenie na żywo prowadzone przez instruktora (na miejscu lub zdalnie) jest przeznaczone dla programistów i analityków danych, którzy chcą korzystać z Tensorflow 2.x do tworzenia predyktorów, klasyfikatorów, modeli generatywnych, sieci neuronowych itp.
Po zakończeniu tego szkolenia uczestnicy będą w stanie
- Instalacja i konfiguracja TensorFlow 2.x.
- Zrozumienie korzyści płynących z TensorFlow 2.x w porównaniu z poprzednimi wersjami.
- Buduj modele głębokiego uczenia.
- Wdrożenie zaawansowanego klasyfikatora obrazów.
- Deploy a deep learning model to the cloud, mobile and IoT devices.
TensorFlow Serving
7 godzinW tym prowadzonym przez instruktora szkoleniu na żywo w Polsce (online lub na miejscu) uczestnicy dowiedzą się, jak skonfigurować i używać TensorFlow Serving do wdrażania modeli ML i zarządzania nimi w środowisku produkcyjnym.
Po zakończeniu tego szkolenia uczestnicy będą w stanie
- Trenuj, eksportuj i obsługuj różne modele TensorFlow.
- Testowanie i wdrażanie algorytmów przy użyciu jednej architektury i zestawu interfejsów API.
- Rozszerzenie TensorFlow Serving w celu obsługi innych typów modeli poza modelami TensorFlow.
Deep Learning with TensorFlow
21 godzinTensorFlow to API drugiej generacji Google' biblioteki oprogramowania open source do uczenia głębokiego. System został zaprojektowany w celu ułatwienia badań nad uczeniem maszynowym oraz szybkiego i łatwego przejścia od prototypu badawczego do systemu produkcyjnego.
Uczestnicy
Ten kurs jest przeznaczony dla inżynierów, którzy chcą wykorzystać TensorFlow w swoich projektach Deep Learning
Po ukończeniu tego kursu uczestnicy będą
- rozumieć TensorFlow’strukturę i mechanizmy wdrażania
- być w stanie przeprowadzić zadania i konfigurację instalacji / środowiska produkcyjnego / architektury
- być w stanie ocenić jakość kodu, przeprowadzić debugowanie, monitorowanie
- być w stanie wdrożyć zaawansowaną produkcję, taką jak modele szkoleniowe, tworzenie wykresów i rejestrowanie
TensorFlow for Image Recognition
28 godzinKurs ten bada, na konkretnych przykładach, zastosowanie Tensor Flow do celów rozpoznawania obrazów
Uczestnicy
Ten kurs jest przeznaczony dla inżynierów pragnących wykorzystać TensorFlow do celów rozpoznawania obrazów
Po ukończeniu tego kursu uczestnicy będą w stanie
- zrozumieć strukturę i mechanizmy wdrażania TensorFlow&rsquo
- przeprowadzać zadania i konfigurację instalacji / środowiska produkcyjnego / architektury
- oceniać jakość kodu, przeprowadzać debugowanie, monitorowanie
- wdrażać zaawansowane funkcje produkcyjne, takie jak trenowanie modeli, budowanie wykresów i logowanie
TensorFlow Extended (TFX)
21 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (online lub na miejscu) jest przeznaczone dla naukowców zajmujących się danymi, którzy chcą przejść od szkolenia pojedynczego modelu ML do wdrożenia wielu modeli ML do produkcji.
Po zakończeniu tego szkolenia uczestnicy będą w stanie
- Instalacja i konfiguracja TFX oraz narzędzi innych firm.
- Używanie TFX do tworzenia i zarządzania kompletnym potokiem produkcyjnym ML.
- Praca z komponentami TFX w celu przeprowadzenia modelowania, szkolenia, obsługi wnioskowania i zarządzania wdrożeniami.
- Wdrażaj funkcje uczenia maszynowego w aplikacjach internetowych, aplikacjach mobilnych, urządzeniach IoT i nie tylko.
Natural Language Processing (NLP) with TensorFlow
35 godzinTensorFlow™ to biblioteka oprogramowania typu open source do obliczeń numerycznych z wykorzystaniem wykresów przepływu danych.
SyntaxNet to neuronowa platforma przetwarzania języka naturalnego dla TensorFlow.
Word2Vec jest używany do uczenia się wektorowych reprezentacji słów, zwanych "word embeddings". Word2vec jest szczególnie wydajnym obliczeniowo modelem predykcyjnym do uczenia się osadzania słów z surowego tekstu. Występuje on w dwóch wersjach: Continuous Bag-of-Words model (CBOW) i Skip-Gram model (rozdział 3.1 i 3.2 w Mikolov et al.).
Używane w tandemie, SyntaxNet i Word2Vec pozwalają użytkownikom generować wyuczone modele osadzania z danych wejściowych języka naturalnego.
Uczestnicy
Ten kurs jest skierowany do programistów i inżynierów, którzy zamierzają pracować z modelami SyntaxNet i Word2Vec w swoich wykresach TensorFlow.
Po ukończeniu tego kursu uczestnicy będą
- rozumieć TensorFlow’strukturę i mechanizmy wdrażania
- być w stanie przeprowadzić zadania i konfigurację instalacji / środowiska produkcyjnego / architektury
- być w stanie ocenić jakość kodu, przeprowadzić debugowanie, monitorowanie
- być w stanie wdrożyć zaawansowaną produkcję, taką jak modele szkoleniowe, osadzanie terminów, tworzenie wykresów i rejestrowanie
Understanding Deep Neural Networks
35 godzinTen kurs rozpoczyna się od przekazania wiedzy koncepcyjnej na temat sieci neuronowych i ogólnie algorytmów uczenia maszynowego, głębokiego uczenia się (algorytmy i aplikacje).
Część 1 (40%) tego szkolenia koncentruje się bardziej na podstawach, ale pomoże ci wybrać odpowiednią technologię: TensorFlow, Caffe, Theano, DeepDrive, Keras itp.
Część 2 (20%) tego szkolenia wprowadza Theano - bibliotekę Pythona, która ułatwia pisanie modeli głębokiego uczenia się.
Część trzecia (40%) szkolenia będzie w znacznym stopniu oparta na Tensorflow - API drugiej generacji otwartej biblioteki oprogramowania Google do uczenia głębokiego. Przykłady i ćwiczenia zostaną wykonane w TensorFlow.
Uczestnicy
Ten kurs jest przeznaczony dla inżynierów, którzy chcą wykorzystać TensorFlow w swoich projektach Deep Learning
Po ukończeniu tego kursu uczestnicy będą
- dobrze rozumie głębokie sieci neuronowe (DNN), CNN i RNN
- rozumieć TensorFlow’ strukturę i mechanizmy wdrażania
- być w stanie wykonać zadania i konfigurację instalacji / środowiska produkcyjnego / architektury
- być w stanie ocenić jakość kodu, przeprowadzić debugowanie, monitorowanie
- być w stanie wdrożyć zaawansowaną produkcję, taką jak modele szkoleniowe, tworzenie wykresów i rejestrowanie