Plan Szkolenia

    Przegląd sieci neuronowych i głębokiego uczenia się Koncepcja uczenia maszynowego (ML) Dlaczego potrzebujemy sieci neuronowych i głębokiego uczenia się? Dobór sieci do różnych problemów i typów danych Uczenie się i walidacja sieci neuronowych Porównanie regresji logistycznej z siecią neuronową Sieć neuronowa Biologiczne inspiracje do sieci neuronowej Sieci neuronowe – Neuron, Perceptron i MLP (Multilayer Perceptron model) Uczenie się MLP – algorytm propagacji wstecznej Funkcje aktywacji – liniowe, sigmoidalne , Tanh, Softmax Funkcje strat odpowiednie do prognozowania i klasyfikacji Parametry – szybkość uczenia się, regularyzacja, pęd Budowanie sieci neuronowych w Python Ocena wydajności sieci neuronowych w Python Podstawy głębokich sieci Co to jest głębokie uczenie się? Architektura sieci głębokich – parametry, warstwy, funkcje aktywacji, funkcje strat, solwery Ograniczone maszyny Boltzmana (RBM) Autoenkodery Architektury sieci głębokich Sieci głębokich przekonań (DBN) – architektura, zastosowanie Autoenkodery Ograniczone maszyny Boltzmanna Splotowa sieć neuronowa Rekursywna sieć neuronowa Rekurencyjna sieć neuronowa Omówienie bibliotek i interfejsów dostępnych w Python Caffee Theano Tensorflow Keras Mxnet Wybór odpowiedniej biblioteki do problemu Budowa głębokich sieci w Python Wybór odpowiedniej architektury do zadanego problemu Głębokie sieci hybrydowe Sieć ucząca się – odpowiednia biblioteka, definicja architektury Sieć dostrajająca – inicjalizacja, funkcje aktywacyjne , funkcje strat, metoda optymalizacji Unikanie nadmiernego dopasowania – wykrywanie problemów związanych z nadmiernym dopasowaniem w głębokich sieciach, regularyzacja Ocena głębokich sieci Studia przypadków w Python Rozpoznawanie obrazu – CNN Wykrywanie anomalii za pomocą Autoenkoderów Prognozowanie szeregów czasowych za pomocą RNN Redukcja wymiarów za pomocą Autoenkodera Klasyfikacja za pomocą RBM

Wymagania

Pożądana jest znajomość/ocena uczenia maszynowego, architektury systemów i języków programowania.

 14 godzin

Liczba uczestników


cena netto za uczestnika

Propozycje terminów

Powiązane Kategorie