Szkolenia Data Visualization

Opinie uczestników

Data Visualization

I thought that the information was interesting.

Allison May - Virginia Department of Education

Data Visualization

I really appreciated that Jeff utilized data and examples that were applicable to education data. He made it interesting and interactive.

Carol Wells Bazzichi - Virginia Department of Education

Data Visualization

Learning about all the chart types and what they are used for. Learning the value of decluttering. Learning about the methods to show time data.

Susan Williams - Virginia Department of Education

Data Visualization

Trainer was enthusiastic.

Diane Lucas - Virginia Department of Education

Data Visualization

Content / Instructor

Craig Roberson - Virginia Department of Education

Data Visualization

I am a hands-on learner and this was something that he did a lot of.

Lisa Comfort - Virginia Department of Education

Data Visualization

The examples.

peter coleman - Virginia Department of Education

Data Visualization

The examples.

peter coleman - Virginia Department of Education

Data Visualization

Good real world examples, reviews of existing reports

Ronald Parrish - Virginia Department of Education

Plany Szkoleń Data Visualization

Kod Nazwa Czas trwania Charakterystyka kursu
OpenNN OpenNN: Implementing neural networks 14 godz. OpenNN is an open-source class library written in C++  which implements neural networks, for use in machine learning. In this course we go over the principles of neural networks and use OpenNN to implement a sample application. Audience     Software developers and programmers wishing to create Deep Learning applications. Format of the course     Lecture and discussion coupled with hands-on exercises. Introduction to OpenNN, Machine Learning and Deep Learning Downloading OpenNN Working with Neural Designer     Using Neural Designer for descriptive, diagnostic, predictive and prescriptive analytics OpenNN architecture     CPU parallelization OpenNN classes     Data set, neural network, loss index, training strategy, model selection, testing analysis     Vector and matrix templates Building a neural network application     Choosing a suitable neural network     Formulating the variational problem (loss index)     Solving the reduced function optimization problem (training strategy) Working with datasets      The data matrix (columns as variables and rows as instances) Learning tasks     Function regression     Pattern recognition Compiling with QT Creator Integrating, testing and debugging your application The future of neural networks and OpenNN
kdd Knowledge Discover in Databases (KDD) 21 godz. Knowledge discovery in databases (KDD) is the process of discovering useful knowledge from a collection of data. Real-life applications for this data mining technique include marketing, fraud detection, telecommunication and manufacturing. In this course, we introduce the processes involved in KDD and carry out a series of exercises to practice the implementation of those processes. Audience     Data analysts or anyone interested in learning how to interpret data to solve problems Format of the course     After a theoretical discussion of KDD, the instructor will present real-life cases which call for the application of KDD to solve a problem. Participants will prepare, select and cleanse sample data sets and use their prior knowledge about the data to propose solutions based on the results of their observations. Introduction     KDD vs data mining Establishing the application domain Establishing relevant prior knowledge Understanding the goal of the investigation Creating a target data set Data cleaning and preprocessing Data reduction and projection Choosing the data mining task Choosing the data mining algorithms Interpreting the mined patterns
neo4j Beyond the relational database: neo4j 21 godz. Relational, table-based databases such as Oracle and MySQL have long been the standard for organizing and storing data. However, the growing size and fluidity of data have made it difficult for these traditional systems to efficiently execute highly complex queries on the data. Imagine replacing rows-and-columns-based data storage with object-based data storage, whereby entities (e.g., a person) could be stored as data nodes, then easily queried on the basis of their vast, multi-linear relationship with other nodes. And imagine querying these connections and their associated objects and properties using a compact syntax, up to 20 times lighter than SQL? This is what graph databases, such as neo4j offer. In this hands-on course, we will set up a live project and put into practice the skills to model, manage and access your data. We contrast and compare graph databases with SQL-based databases as well as other NoSQL databases and clarify when and where it makes sense to implement each within your infrastructure. Audience Database administrators (DBAs) Data analysts Developers System Administrators DevOps engineers Business Analysts CTOs CIOs Format of the course Heavy emphasis on hands-on practice. Most of the concepts are learned through samples, exercises and hands-on development.   Getting started with neo4j neo4j vs relational databases neo4j vs other NoSQL databases Using neo4j to solve real world problems Installing neo4j Data modeling with neo4j Mapping white-board diagrams and mind maps to neo4j Working with nodes Creating, changing and deleting nodes Defining node properties Node relationships Creating and deleting relationships Bi-directional relationships Querying your data with Cypher Querying your data based on relationships MATCH, RETURN, WHERE, REMOVE, MERGE, etc. Setting indexes and constraints Working with the REST API REST operations on nodes REST operations on relationships REST operations on indexes and constraints Accessing the core API for application development Working with NET, Java, Javascript, Python APIs Closing remarks  
datavisR1 Introduction to Data Visualization with R 28 godz. This course is intended for data engineers, decision makers and data analysts and will lead you to create very effective plots using R studio that appeal to decision makers and help them find out hidden information and take the right decisions   Day 1: overview of R programming introduction to data visualization scatter plots and clusters the use of noise and jitters Day 2: other type of 2D and 3D plots histograms heat charts categorical data plotting Day 3: plotting KPIs with data R and X charts examples dashboards parallel axes mixing categorical data with numeric data Day 4: different hats of data visualization disguised and hidden trends case studies saving plots and loading Excel files
datavis1 Data Visualization 28 godz. This course is intended for engineers and decision makers working in data mining and knoweldge discovery. You will learn how to create effective plots and ways to present and represent your data in a way that will appeal to the decision makers and help them to understand hidden information. Day 1: what is data visualization why it is important data visualization vs data mining human cognition HMI common pitfalls Day 2: different type of curves drill down curves categorical data plotting multi variable plots data glyph and icon representation Day 3: plotting KPIs with data R and X charts examples what if dashboards parallel axes mixing categorical data with numeric data Day 4: different hats of data visualization how can data visualization lie disguised and hidden trends a case study of student data visual queries and region selection
octnp Octave nie tylko dla programistów 21 godz. Szkolenie dedykowane osobom, które chciałyby zapoznać się z obsługą programu alternatywnego do komercyjnego pakietu MATLAB. Kurs trzydniowy dostarcza kompleksowo informacje dotyczące poruszania się po środowisku i wykonywaniu pakietu OCTAVE w zastosowaniu do analizy danych i obliczeń inżynierskich. Adresatami szkolenia są osoby początkujące ale także ci, którzy znają program i chcieliby usystematyzować swoją wiedzę i podnieść umiejętności. Nie jest wymagana znajomość innych języków programowania ale w znacznym stopniu ułatwi to uczestnikom przyswajanie wiedzy. Na kursie pokazane zostaną możliwości wykorzystania program na wielu przykładach praktycznych. Wstęp Podstawowe obliczenia Rozpoczęcie pracy z Octave, Octave jako kalkulator, funkcje wbudowane Środowisko Octave Zmienne, liczny I formatowanie, reprezentacje liczb I ich dokładność, zapisywanie i wczytywanie danych  Tablice i wektory Wyodrębnianie liczb z wektorów, arytmetyka wektorowa Wykresy Prezentacja danych na wykresie, przygotowanie wielu wykresów oraz wielu okien z wykresami, zapisywanie i drukowanie wykresów Programowanie w Octave cz. I: Skrypty Tworzenie i edycja skryptu, uruchamianie i debugowanie skryptów, Instrukcje sterujące wykonywanie programu If else, switch, for, while Programowanie w Octave cz. II: Funkcje Macierze i wektory macierze, transpozycja, funkcje tworzące macierze, budowanie złożonych macierzy, macierz jako tablica, wyodrębnianie bitów z macierzy, podstawowe funkcje macierzowe Równanie liniowe i nieliniowe Więcej wykresów Budowanie wielu wykresów na jednym rysunku, wykresy 3D, zmiana perspektywy, wykresy powierzchniowe, rysunki i filmy,  Matematyka macierzowa Wartości własne, dekompozycja  Liczby zespolone Wykresy liczb zespolonych Statystyka i przetwarzanie danych Budowanie graficznego interfejsu użytkownika
BigData_ A practical introduction to Data Analysis and Big Data 28 godz. Participants who complete this training will gain a practical, real-world understanding of Big Data and its related technologies, methodologies and tools. Participants will have the opportunity to put this knowledge into practice through hands-on exercises. Group interaction and instructor feedback make up an important component of the class. The course starts with an introduction to elemental concepts of Big Data, then progresses into the programming languages and methodologies used to perform Data Analysis. Finally, we discuss the tools and infrastructure that enable Big Data storage, Distributed Processing, and Scalability. Audience Developers / programmers IT consultants Format of the course     Part lecture, part discussion, heavy hands-on practice and implementation, occasional quizing to measure progress. Introduction to Data Analysis and Big Data What makes Big Data "big"? Velocity, Volume, Variety, Veracity (VVVV) Limits to traditional Data Processing Distributed Processing Statistical Analysis Types of Machine Learning Analysis Data Visualization Languages used for Data Analysis R language (crash course) Why R for Data Analysis? Data manipulation, calculation and graphical display Python (crash course) Why Python for Data Analysis? Manipulating, processing, cleaning, and crunching data Approaches to Data Analysis Statistical Analysis Time Series analysis Forecasting with Correlation and Regression models Inferential Statistics (estimating) Descriptive Statistics in Big Data sets (e.g. calculating mean) Machine Learning Supervised vs unsupervised learning Classification and clustering Estimating cost of specific methods Filtering Natural Language Processing Processing text Understaing meaning of the text Automatic text generation Sentiment/Topic Analysis Computer Vision Acquiring, processing, analyzing, and understanding images Reconstructing, interpreting and understanding 3D scenes Using image data to make decisions Big Data infrastructure Data Storage Relational databases (SQL) MySQL Postgres Oracle Non-relational databases (NoSQL) Cassandra MongoDB Neo4js Understanding the nuances Hierarchical databases Object-oriented databases Document-oriented databases Graph-oriented databases Other Distributed Processing Hadoop HDFS as a distributed filesystem MapReduce for distributed processing Spark All-in-one in-memory cluster computing framework for large-scale data processing Structured streaming Spark SQL Machine Learning libraries: MLlib Graph processing with GraphX Search Engines ElasticSearch Solr Scalability Public cloud AWS, Google, Aliyun, etc. Private cloud OpenStack, Cloud Foundry, etc. Auto-scalability Choosing right solution for the problem The future of Big Data Closing remarks  
nlpwithr NLP: Natural Language Processing with R 21 godz. It is estimated that unstructured data accounts for more than 90 percent of all data, much of it in the form of text. Blog posts, tweets, social media, and other digital publications continuously add to this growing body of data. This course centers around extracting insights and meaning from this data. Utilizing the R Language and Natural Language Processing (NLP) libraries, we combine concepts and techniques from computer science, artificial intelligence, and computational linguistics to algorithmically understand the meaning behind text data. Data samples are available in various languages per customer requirements. By the end of this training participants will be able to prepare data sets (large and small) from disparate sources, then apply the right algorithms to analyze and report on its significance. Audience     Linguists and programmers Format of the course     Part lecture, part discussion, heavy hands-on practice, occasional tests to gauge understanding Introduction     NLP and R vs Python Installing and configuring R Studio Installing R packages related to Natural Language Processing (NLP). An overview of R’s text manipulation capabilities Getting started with an NLP project in R Reading and importing data files into R Text manipulation with R Document clustering in R Parts of speech tagging in R Sentence parsing in R Working with regular expressions in R Named-entity recognition in R Topic modeling in R Text classification in R Working with very large data sets Visualizing your results Optimization Integrating R with other languages (Java, Python, etc.) Closing remarks
druid Druid: Build a fast, real-time data analysis system 21 godz. Druid is an open-source, column-oriented, distributed data store written in Java. It was designed to quickly ingest massive quantities of event data and execute low-latency OLAP queries on that data. Druid is commonly used in business intelligence applications to analyze high volumes of real-time and historical data. It is also well suited for powering fast, interactive, analytic dashboards for end-users. Druid is used by companies such as Alibaba, Airbnb, Cisco, eBay, Netflix, Paypal, and Yahoo. In this course we explore some of the limitations of data warehouse solutions and discuss how Druid can compliment those technologies to form a flexible and scalable streaming analytics stack. We walk through many examples, offering participants the chance to implement and test Druid-based solutions in a lab environment. Audience     Application developers     Software engineers     Technical consultants     DevOps professionals     Architecture engineers Format of the course     Part lecture, part discussion, heavy hands-on practice, occasional tests to gauge understanding Introduction Installing and starting Druid Druid architecture and design Real-time ingestion of event data Sharding and indexing Loading data Querying data Visualizing data Running a distributed cluster Druid + Apache Hive Druid + Apache Kafka Druid + others Troubleshooting Administrative tasks

Other regions

Szkolenie Data Visualization, Data Visualization boot camp, Szkolenia Zdalne Data Visualization, szkolenie wieczorowe Data Visualization, szkolenie weekendowe Data Visualization , wykładowca Data Visualization , kurs zdalny Data Visualization,Kurs Data Visualization, Trener Data Visualization, kurs online Data Visualization, lekcje UML, instruktor Data Visualization, edukacja zdalna Data Visualization, nauka przez internet Data Visualization,Kursy Data Visualization, e-learning Data Visualization

Kursy w promocyjnej cenie

Szkolenie Miejscowość Data Kursu Cena szkolenia [Zdalne / Stacjonarne]
Java Performance Tuning Wrocław, ul.Ludwika Rydygiera 2a/22 pon., 2017-07-31 09:00 9801PLN / 3000PLN
Angular JavaScript Gdynia, ul. Ejsmonda 2 pon., 2017-07-31 09:00 7425PLN / 3475PLN
WordPress Wrocław, ul.Ludwika Rydygiera 2a/22 pon., 2017-07-31 09:00 4851PLN / 1570PLN
Node.js concepts & administration, Express.js, V8 engine, monitoring, pm2 Gliwice ul. Karola Marksa 11 wt., 2017-08-01 09:00 9009PLN / 3430PLN
Automatyzacja testów za pomocą Selenium Wrocław, ul.Ludwika Rydygiera 2a/22 śr., 2017-08-02 09:00 7722PLN / 3174PLN
MS SQL Server 2016 Gdynia, ul. Ejsmonda 2 śr., 2017-08-02 09:00 8712PLN / 3140PLN
Visual Basic for Applications (VBA) w Excel - wprowadzenie Wrocław, ul.Ludwika Rydygiera 2a/22 śr., 2017-08-02 09:00 2376PLN / 1192PLN
Angular JavaScript Gdańsk, ul. Powstańców Warszawskich 45 pon., 2017-08-07 09:00 7425PLN / 3475PLN
Tworzenie stron internetowych i optymalizacja pod kątem marketingu internetowego Wrocław, ul.Ludwika Rydygiera 2a/22 pon., 2017-08-07 09:00 4851PLN / 3205PLN
Programowanie w ASP.NET MVC 5 Rzeszów, Plac Wolności 13 śr., 2017-08-09 09:00 5841PLN / 2223PLN
Język SQL w bazie danych MSSQL Lublin, ul. Spadochroniarzy 9 czw., 2017-08-10 09:00 2970PLN / 1243PLN
Programowanie w WPF 4.5 Lublin, ul. Spadochroniarzy 9 śr., 2017-08-16 09:00 6435PLN / 2443PLN
Oracle 11g - Język SQL dla programistów - warsztaty Gdańsk, ul. Powstańców Warszawskich 45 pon., 2017-08-21 09:00 6930PLN / 3640PLN
Embedded C Application Design Principles Kraków, ul. Rzemieślnicza 1 czw., 2017-08-24 09:00 12266PLN / 4517PLN
Efektywne wykorzystanie Social Media - Facebook, Twitter, Youtube, Google+, blogi Gdynia, ul. Ejsmonda 2 czw., 2017-08-31 09:00 1881PLN / 1002PLN
Certyfikacja OCUP2 UML 2.5 - Przygotowanie do egzaminu OCUP2 Foundation Katowice ul. Opolska 22 pon., 2017-09-04 09:00 6930PLN / 3360PLN
General Data Protection Regulation - zmiany prawne, wprowadzenie teoretyczne, praktyczne aspekty Wrocław, ul.Ludwika Rydygiera 2a/22 pon., 2017-09-04 09:00 7128PLN / 2560PLN
Oracle 12c – Zaawansowane programowanie w PL/SQL Wrocław, ul.Ludwika Rydygiera 2a/22 śr., 2017-09-06 09:00 9900PLN / 3900PLN
Techniki DTP (InDesign, Photoshop, Illustrator, Acrobat) Poznań, Garbary 100/63 pon., 2017-09-11 09:00 5940PLN / 2980PLN
Fundamentals of Devops Wrocław, ul.Ludwika Rydygiera 2a/22 wt., 2017-09-12 09:00 14563PLN / 5013PLN
Język SQL w bazie danych MSSQL Bydgoszcz, ul. Dworcowa 94 wt., 2017-09-19 09:00 2970PLN / 1243PLN
Visual Basic for Applications (VBA) w Excel - poziom zaawansowany Warszawa, ul. Złota 3/11 pon., 2017-09-25 09:00 3069PLN / 1623PLN
Tworzenie i zarządzanie stronami WWW Poznań, Garbary 100/63 pon., 2017-09-25 09:00 5841PLN / 2298PLN
Wzorce projektowe w C# Rzeszów, Plac Wolności 13 czw., 2017-09-28 09:00 3861PLN / 2331PLN
Visual Basic for Applications (VBA) w Excel - wprowadzenie Szczecin, ul. Sienna 9 czw., 2017-10-05 09:00 2376PLN / 1292PLN
Analiza biznesowa i systemowa z użyciem notacji UML - warsztat praktyczny dla PO w metodyce Scrum Łódź, ul. Tatrzańska 11 wt., 2017-10-10 09:00 7722PLN / 3474PLN
Access - podstawy Szczecin, ul. Sienna 9 wt., 2017-10-10 09:00 3465PLN / 1550PLN
PostgreSQL for Administrators Gdynia, ul. Ejsmonda 2 śr., 2017-10-11 09:00 12326PLN / 4235PLN

Newsletter z promocjami

Zapisz się na nasz newsletter i otrzymuj informacje o aktualnych zniżkach na kursy otwarte.
Szanujemy Twoją prywatność, dlatego Twój e-mail będzie wykorzystywany jedynie w celu wysyłki naszego newslettera, nie będzie udostępniony ani sprzedany osobom trzecim.
W dowolnej chwili możesz zmienić swoje preferencje co do otrzymywanego newslettera bądź całkowicie się z niego wypisać.

Zaufali nam