Szkolenia Sieci Neuronowe w Olsztyn

Sieci Neuronowe Training in Olsztyn
Neural Networks courses

Olsztyn, ul. Kajki 3/1

sale szkoleniowe NobleProg
ul. Kajki 3/1
10-546 Olsztyn , WM
Poland
Warminsko-Mazurskie PL
Olsztyn, ul. Kajki 3/1
Sala o charakterze szkoleniowo – konferencyjnym z pełnym wyposażeniem audio-wizualnym. Funkcjonalne meble zapewniają możliwość ustawienie ich w układzie...Read more

Opinie uczestników

Artificial Neural Networks, Machine Learning, Deep Thinking

It was very interactive and more relaxed and informal than expected. We covered lots of topics in the time and the trainer was always receptive to talking more in detail or more generally about the topics and how they were related. I feel the training has given me the tools to continue learning as opposed to it being a one off session where learning stops once you've finished which is very important given the scale and complexity of the topic.

Jonathan Blease - Knowledgepool Group Ltd

Introduction to the use of neural networks

Ann created a great environment to ask questions and learn. We had a lot of fun and also learned a lot at the same time.

Gudrun Bickelq - Tricentis GmbH

Introduction to the use of neural networks

Ann created a great environment to ask questions and learn. We had a lot of fun and also learned a lot at the same time.

Gudrun Bickelq - Tricentis GmbH

Introduction to the use of neural networks

the interactive part, tailored to our specific needs

Thomas Stocker - Tricentis GmbH

From Data to Decision with Big Data and Predictive Analytics

zakres materialu

Maciej Jonczyk - Orange Polska

From Data to Decision with Big Data and Predictive Analytics

usystematyzowanie wiedzy z dziedziny ML

- Orange Polska

Sieci Neuronowe Course Events - Olsztyn

Kod Nazwa Miejscowość Czas trwania Data Kursu PHP Cena szkolenia [Zdalne / Stacjonarne]
pjn Przetwarzanie języka naturalnego Olsztyn, ul. Kajki 3/1 7 hours pon., 2017-03-13 09:00 6000PLN / 2068PLN
iop Inteligencja obliczeniowa w praktyce Olsztyn, ul. Kajki 3/1 7 hours pon., 2017-03-13 09:00 6000PLN / 2068PLN
neuralnet Introduction to the use of neural networks Olsztyn, ul. Kajki 3/1 7 hours pt., 2017-03-17 09:00 4580PLN / 1597PLN
mtdintob Metody Inteligencji Obliczeniowej Olsztyn, ul. Kajki 3/1 7 hours śr., 2017-03-22 09:00 6000PLN / 2068PLN
aiauto Artificial Intelligence in Automotive Olsztyn, ul. Kajki 3/1 14 hours śr., 2017-03-22 09:00 13800PLN / 4682PLN
annmldt Artificial Neural Networks, Machine Learning, Deep Thinking Olsztyn, ul. Kajki 3/1 21 hours pon., 2017-03-27 09:00 12370PLN / 4498PLN
Neuralnettf Neural Networks Fundamentals using TensorFlow as Example Olsztyn, ul. Kajki 3/1 28 hours pon., 2017-04-03 09:00 30980PLN / 10388PLN
appliedml Applied Machine Learning Olsztyn, ul. Kajki 3/1 14 hours śr., 2017-04-05 09:00 10110PLN / 3564PLN
mlintro Introduction to Machine Learning Olsztyn, ul. Kajki 3/1 7 hours pt., 2017-04-07 09:00 5060PLN / 1783PLN
rneuralnet Sieci Neuronowe w R Olsztyn, ul. Kajki 3/1 14 hours wt., 2017-04-11 09:00 7000PLN / 4000PLN
sysagent Systemy wieloagentowe Olsztyn, ul. Kajki 3/1 7 hours wt., 2017-04-11 09:00 6000PLN / 2068PLN
d2dbdpa From Data to Decision with Big Data and Predictive Analytics Olsztyn, ul. Kajki 3/1 21 hours śr., 2017-04-12 09:00 29220PLN / 9605PLN
cntk Using Computer Network ToolKit (CNTK) Olsztyn, ul. Kajki 3/1 28 hours wt., 2017-04-18 09:00 25020PLN / 8582PLN
aiint Artificial Intelligence Overview Olsztyn, ul. Kajki 3/1 7 hours śr., 2017-04-19 09:00 2800PLN / 1327PLN
aiintrozero From Zero to AI Olsztyn, ul. Kajki 3/1 35 hours pon., 2017-04-24 09:00 24900PLN / 8795PLN
deeplearning1 Introduction to Deep Learning Olsztyn, ul. Kajki 3/1 21 hours wt., 2017-04-25 09:00 18260PLN / 6283PLN
MLFWR1 Machine Learning Fundamentals with R Olsztyn, ul. Kajki 3/1 14 hours śr., 2017-04-26 09:00 7000PLN / 4000PLN
pjn Przetwarzanie języka naturalnego Olsztyn, ul. Kajki 3/1 7 hours wt., 2017-05-02 09:00 6000PLN / 2068PLN
iop Inteligencja obliczeniowa w praktyce Olsztyn, ul. Kajki 3/1 7 hours wt., 2017-05-16 09:00 6000PLN / 2068PLN
annmldt Artificial Neural Networks, Machine Learning, Deep Thinking Olsztyn, ul. Kajki 3/1 21 hours pon., 2017-05-29 09:00 12370PLN / 4498PLN
appliedml Applied Machine Learning Olsztyn, ul. Kajki 3/1 14 hours wt., 2017-05-30 09:00 10110PLN / 3564PLN
rneuralnet Sieci Neuronowe w R Olsztyn, ul. Kajki 3/1 14 hours pon., 2017-06-05 09:00 7000PLN / 4000PLN
d2dbdpa From Data to Decision with Big Data and Predictive Analytics Olsztyn, ul. Kajki 3/1 21 hours wt., 2017-06-06 09:00 29220PLN / 9605PLN
aiint Artificial Intelligence Overview Olsztyn, ul. Kajki 3/1 7 hours czw., 2017-06-08 09:00 2800PLN / 1327PLN
sysagent Systemy wieloagentowe Olsztyn, ul. Kajki 3/1 7 hours pt., 2017-06-09 09:00 6000PLN / 2068PLN
aiauto Artificial Intelligence in Automotive Olsztyn, ul. Kajki 3/1 14 hours wt., 2017-06-13 09:00 13800PLN / 4682PLN
mtdintob Metody Inteligencji Obliczeniowej Olsztyn, ul. Kajki 3/1 7 hours wt., 2017-06-13 09:00 6000PLN / 2068PLN
aiintrozero From Zero to AI Olsztyn, ul. Kajki 3/1 35 hours pon., 2017-06-19 09:00 24900PLN / 8795PLN
neuralnet Introduction to the use of neural networks Olsztyn, ul. Kajki 3/1 7 hours czw., 2017-06-22 09:00 4580PLN / 1597PLN
Neuralnettf Neural Networks Fundamentals using TensorFlow as Example Olsztyn, ul. Kajki 3/1 28 hours pon., 2017-06-26 09:00 30980PLN / 10388PLN
cntk Using Computer Network ToolKit (CNTK) Olsztyn, ul. Kajki 3/1 28 hours pon., 2017-06-26 09:00 25020PLN / 8582PLN
pjn Przetwarzanie języka naturalnego Olsztyn, ul. Kajki 3/1 7 hours pt., 2017-06-30 09:00 6000PLN / 2068PLN
iop Inteligencja obliczeniowa w praktyce Olsztyn, ul. Kajki 3/1 7 hours wt., 2017-07-04 09:00 6000PLN / 2068PLN
MLFWR1 Machine Learning Fundamentals with R Olsztyn, ul. Kajki 3/1 14 hours wt., 2017-07-04 09:00 7000PLN / 4000PLN
deeplearning1 Introduction to Deep Learning Olsztyn, ul. Kajki 3/1 21 hours pon., 2017-07-10 09:00 18260PLN / 6283PLN
mlintro Introduction to Machine Learning Olsztyn, ul. Kajki 3/1 7 hours śr., 2017-07-12 09:00 5060PLN / 1783PLN
annmldt Artificial Neural Networks, Machine Learning, Deep Thinking Olsztyn, ul. Kajki 3/1 21 hours śr., 2017-07-19 09:00 12370PLN / 4498PLN
appliedml Applied Machine Learning Olsztyn, ul. Kajki 3/1 14 hours śr., 2017-07-19 09:00 10110PLN / 3564PLN
sysagent Systemy wieloagentowe Olsztyn, ul. Kajki 3/1 7 hours pt., 2017-07-28 09:00 6000PLN / 2068PLN
mtdintob Metody Inteligencji Obliczeniowej Olsztyn, ul. Kajki 3/1 7 hours śr., 2017-08-02 09:00 6000PLN / 2068PLN
d2dbdpa From Data to Decision with Big Data and Predictive Analytics Olsztyn, ul. Kajki 3/1 21 hours śr., 2017-08-02 09:00 29220PLN / 9605PLN
aiauto Artificial Intelligence in Automotive Olsztyn, ul. Kajki 3/1 14 hours czw., 2017-08-03 09:00 13800PLN / 4682PLN
rneuralnet Sieci Neuronowe w R Olsztyn, ul. Kajki 3/1 14 hours czw., 2017-08-03 09:00 7000PLN / 4000PLN
aiint Artificial Intelligence Overview Olsztyn, ul. Kajki 3/1 7 hours pt., 2017-08-04 09:00 2800PLN / 1327PLN
neuralnet Introduction to the use of neural networks Olsztyn, ul. Kajki 3/1 7 hours pon., 2017-08-14 09:00 4580PLN / 1597PLN
pjn Przetwarzanie języka naturalnego Olsztyn, ul. Kajki 3/1 7 hours pt., 2017-08-18 09:00 6000PLN / 2068PLN
Neuralnettf Neural Networks Fundamentals using TensorFlow as Example Olsztyn, ul. Kajki 3/1 28 hours pon., 2017-08-21 09:00 30980PLN / 10388PLN
aiintrozero From Zero to AI Olsztyn, ul. Kajki 3/1 35 hours pon., 2017-08-21 09:00 24900PLN / 8795PLN
cntk Using Computer Network ToolKit (CNTK) Olsztyn, ul. Kajki 3/1 28 hours pon., 2017-08-21 09:00 25020PLN / 8582PLN
MLFWR1 Machine Learning Fundamentals with R Olsztyn, ul. Kajki 3/1 14 hours śr., 2017-08-23 09:00 7000PLN / 4000PLN
iop Inteligencja obliczeniowa w praktyce Olsztyn, ul. Kajki 3/1 7 hours śr., 2017-08-23 09:00 6000PLN / 2068PLN
mlintro Introduction to Machine Learning Olsztyn, ul. Kajki 3/1 7 hours pt., 2017-09-01 09:00 5060PLN / 1783PLN
deeplearning1 Introduction to Deep Learning Olsztyn, ul. Kajki 3/1 21 hours śr., 2017-09-06 09:00 18260PLN / 6283PLN
appliedml Applied Machine Learning Olsztyn, ul. Kajki 3/1 14 hours czw., 2017-09-07 09:00 10110PLN / 3564PLN
annmldt Artificial Neural Networks, Machine Learning, Deep Thinking Olsztyn, ul. Kajki 3/1 21 hours pon., 2017-09-11 09:00 12370PLN / 4498PLN
sysagent Systemy wieloagentowe Olsztyn, ul. Kajki 3/1 7 hours pt., 2017-09-15 09:00 6000PLN / 2068PLN
mtdintob Metody Inteligencji Obliczeniowej Olsztyn, ul. Kajki 3/1 7 hours pt., 2017-09-22 09:00 6000PLN / 2068PLN
aiint Artificial Intelligence Overview Olsztyn, ul. Kajki 3/1 7 hours pt., 2017-09-22 09:00 2800PLN / 1327PLN

Plany Kursów

Kod Nazwa Czas trwania Spis treści
deeplearning1 Introduction to Deep Learning 21 hours This course is general overview for Deep Learning without going too deep into any specific methods. It is suitable for people who want to start using Deep learning to enhance their accuracy of prediction.
  • Backprop, modular models
  • Logsum module
  • RBF Net
  • MAP/MLE loss
  • Parameter Space Transforms
  • Convolutional Module
  • Gradient-Based Learning 
  • Energy for inference,
  • Objective for learning
  • PCA; NLL: 
  • Latent Variable Models
  • Probabilistic LVM
  • Loss Function
  • Handwriting recognition
annmldt Artificial Neural Networks, Machine Learning, Deep Thinking 21 hours

DAY 1 - ARTIFICIAL NEURAL NETWORKS

Introduction and ANN Structure.

  • Biological neurons and artificial neurons.
  • Model of an ANN.
  • Activation functions used in ANNs.
  • Typical classes of network architectures .

Mathematical Foundations and Learning mechanisms.

  • Re-visiting vector and matrix algebra.
  • State-space concepts.
  • Concepts of optimization.
  • Error-correction learning.
  • Memory-based learning.
  • Hebbian learning.
  • Competitive learning.

Single layer perceptrons.

  • Structure and learning of perceptrons.
  • Pattern classifier - introduction and Bayes' classifiers.
  • Perceptron as a pattern classifier.
  • Perceptron convergence.
  • Limitations of a perceptrons.

Feedforward ANN.

  • Structures of Multi-layer feedforward networks.
  • Back propagation algorithm.
  • Back propagation - training and convergence.
  • Functional approximation with back propagation.
  • Practical and design issues of back propagation learning.

Radial Basis Function Networks.

  • Pattern separability and interpolation.
  • Regularization Theory.
  • Regularization and RBF networks.
  • RBF network design and training.
  • Approximation properties of RBF.

Competitive Learning and Self organizing ANN.

  • General clustering procedures.
  • Learning Vector Quantization (LVQ).
  • Competitive learning algorithms and architectures.
  • Self organizing feature maps.
  • Properties of feature maps.

Fuzzy Neural Networks.

  • Neuro-fuzzy systems.
  • Background of fuzzy sets and logic.
  • Design of fuzzy stems.
  • Design of fuzzy ANNs.

Applications

  • A few examples of Neural Network applications, their advantages and problems will be discussed.

DAY -2 MACHINE LEARNING

  • The PAC Learning Framework
    • Guarantees for finite hypothesis set – consistent case
    • Guarantees for finite hypothesis set – inconsistent case
    • Generalities
      • Deterministic cv. Stochastic scenarios
      • Bayes error noise
      • Estimation and approximation errors
      • Model selection
  • Radmeacher Complexity and VC – Dimension
  • Bias - Variance tradeoff
  • Regularisation
  • Over-fitting
  • Validation
  • Support Vector Machines
  • Kriging (Gaussian Process regression)
  • PCA and Kernel PCA
  • Self Organisation Maps (SOM)
  • Kernel induced vector space
    • Mercer Kernels and Kernel - induced similarity metrics
  • Reinforcement Learning

DAY 3 - DEEP LEARNING

This will be taught in relation to the topics covered on Day 1 and Day 2

  • Logistic and Softmax Regression
  • Sparse Autoencoders
  • Vectorization, PCA and Whitening
  • Self-Taught Learning
  • Deep Networks
  • Linear Decoders
  • Convolution and Pooling
  • Sparse Coding
  • Independent Component Analysis
  • Canonical Correlation Analysis
  • Demos and Applications
mlintro Introduction to Machine Learning 7 hours

This training course is for people that would like to apply basic Machine Learning techniques in practical applications.

Audience

Data scientists and statisticians that have some familiarity with machine learning and know how to program R. The emphasis of this course is on the practical aspects of data/model preparation, execution, post hoc analysis and visualization. The purpose is to give a practical introduction to machine learning to participants interested in applying the methods at work

Sector specific examples are used to make the training relevant to the audience.

  • Naive Bayes
  • Multinomial models
  • Bayesian categorical data analysis
  • Discriminant analysis
  • Linear regression
  • Logistic regression
  • GLM
  • EM Algorithm
  • Mixed Models
  • Additive Models
  • Classification
  • KNN
  • Ridge regression
  • Clustering
d2dbdpa From Data to Decision with Big Data and Predictive Analytics 21 hours

Audience

If you try to make sense out of the data you have access to or want to analyse unstructured data available on the net (like Twitter, Linked in, etc...) this course is for you.

It is mostly aimed at decision makers and people who need to choose what data is worth collecting and what is worth analyzing.

It is not aimed at people configuring the solution, those people will benefit from the big picture though.

Delivery Mode

During the course delegates will be presented with working examples of mostly open source technologies.

Short lectures will be followed by presentation and simple exercises by the participants

Content and Software used

All software used is updated each time the course is run so we check the newest versions possible.

It covers the process from obtaining, formatting, processing and analysing the data, to explain how to automate decision making process with machine learning.

Quick Overview

  • Data Sources
  • Minding Data
  • Recommender systems
  • Target Marketing

Datatypes

  • Structured vs unstructured
  • Static vs streamed
  • Attitudinal, behavioural and demographic data
  • Data-driven vs user-driven analytics
  • data validity
  • Volume, velocity and variety of data

Models

  • Building models
  • Statistical Models
  • Machine learning

Data Classification

  • Clustering
  • kGroups, k-means, nearest neighbours
  • Ant colonies, birds flocking

Predictive Models

  • Decision trees
  • Support vector machine
  • Naive Bayes classification
  • Neural networks
  • Markov Model
  • Regression
  • Ensemble methods

ROI

  • Benefit/Cost ratio
  • Cost of software
  • Cost of development
  • Potential benefits

Building Models

  • Data Preparation (MapReduce)
  • Data cleansing
  • Choosing methods
  • Developing model
  • Testing Model
  • Model evaluation
  • Model deployment and integration

Overview of Open Source and commercial software

  • Selection of R-project package
  • Python libraries
  • Hadoop and Mahout
  • Selected Apache projects related to Big Data and Analytics
  • Selected commercial solution
  • Integration with existing software and data sources
MLFWR1 Machine Learning Fundamentals with R 14 hours

The aim of this course is to provide a basic proficiency in applying Machine Learning methods in practice. Through the use of the R programming platform and its various libraries, and based on a multitude of practical examples this course teaches how to use the most important building blocks of Machine Learning, how to make data modeling decisions, interpret the outputs of the algorithms and validate the results.

Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.

Introduction to Applied Machine Learning

  • Statistical learning vs. Machine learning
  • Iteration and evaluation
  • Bias-Variance trade-off

Regression

  • Linear regression
  • Generalizations and Nonlinearity
  • Exercises

Classification

  • Bayesian refresher
  • Naive Bayes
  • Logistic regression
  • K-Nearest neighbors
  • Exercises

Cross-validation and Resampling

  • Cross-validation approaches
  • Bootstrap
  • Exercises

Unsupervised Learning

  • K-means clustering
  • Examples
  • Challenges of unsupervised learning and beyond K-means
neuralnet Introduction to the use of neural networks 7 hours

Szkolenie skierowane jest do osób, które chcą zapoznać się z podstawami sieci neuronowych oraz ich zastosowań.

Podstawy

  • Czy komputery mogą myśleć?
  • Podejście deklaratywne i imperatywne do rozwiązywania problemów
  • Cel bedań nad sztuczna inteligencją
  • Definicja sztucznej inteligencji. Test Turinga. Inne wyznaczniki
  • Rozwój koncepcji inteligentnych systemów
  • Najważniejsze osiągniącia i kierunki rozwoju

Sieci neuronowe

  • Podstawy
  • Koncepcja neuronu i sieci neuronowych
  • Uproszczony model mózgu
  • Możliwości neuronu
  • Problem XOR i charakter podziału wartości
  • Polimorficzny charakter funkcji sigmoidalnej
  • Pozostałe funkcje aktywacji
  • Budowa sieci neuronowych
  • Koncepcja łączenie neuronów
  • Sieć neuronowa jako węzły
  • Budowa sieci
  • Neurony
  • Warstwy
  • Wagi
  • Dane wejściowe i wyjściowe
  • Zakresy 0..1
  • Normalizacja
  • Uczenie sieci neuronowych
  • Propagacja wsteczna
  • Kroki propagacji
  • Algorytmy uczenia sieci
  • Zakres zastosowań
  • Estymacja
  • Problemy z możliwością przybliżenia wyniku
  • Przykłady
  • Problem XOR
  • Totolotek?
  • Kursy akcji
  • OCR i rozpoznawanie wzorów obrazów
  • Inne zastosowania
  • Modelowanie sieci neuronowej realizującej zadanie przewidywania kursów akcji giełdowych

Problemy na dziś

  • Eksplocja kombinatoryczna i problemy gier
  • Test Turinga raz jeszcze
  • Zbytnia ufność w możliwości komputerów
aiauto Artificial Intelligence in Automotive 14 hours

This course covers AI (emphasizing Machine Learning and Deep Learning) in Automotive Industry. It helps to determine which technology can be (potentially) used in multiple situation in a car: from simple automation, image recognition to autonomous decision making.

Current state of the technology

  • What is used
  • What may be potentially used

Rules based AI 

  • Simplifying decision

Machine Learning 

  • Classification
  • Clustering
  • Neural Networks
  • Types of Neural Networks
  • Presentation of working examples and discussion

Deep Learning

  • Basic vocabulary 
  • When to use Deep Learning, when not to
  • Estimating computational resources and cost
  • Very short theoretical background to Deep Neural Networks

Deep Learning in practice (mainly using TensorFlow)

  • Preparing Data
  • Choosing loss function
  • Choosing appropriate type on neural network
  • Accuracy vs speed and resources
  • Training neural network
  • Measuring efficiency and error

Sample usage

  • Anomaly detection
  • Image recognition
  • ADAS

 

 

 

 

aiintrozero From Zero to AI 35 hours

This course is created for people who have no previous experience in probability and statistics.

Probability (3.5h)

  • Definition of probability
  • Binomial distribution
  • Everyday usage exercises

Statistics (10.5h)

  • Descriptive Statistics
  • Inferential Statistics
  • Regression
  • Logistic Regression
  • Exercises

Intro to programming (3.5h)

  • Procedural Programming
  • Functional Programming
  • OOP Programming
  • Exercises (writing logic for a game of choice, e.g. noughts and crosses)

Machine Learning (10.5h)

  • Classification
  • Clustering
  • Neural Networks
  • Exercises (write AI for a computer game of choice)

Rules Engines and Expert Systems (7 hours)

  • Intro to Rule Engines
  • Write AI for the same game and combing solutions into hybrid approach
cntk Using Computer Network ToolKit (CNTK) 28 hours

Computer Network ToolKit (CNTK) is Microsoft's Open Source, Multi-machine, Multi-GPU, Highly efficent RNN training machine learning framework for speech, text, and images.

Audience

This course is directed at engineers and architects aiming to utilize CNTK in their projects.

Getting started

  • Setup CNTK on your machine
    • Enabling 1bit SGD
    • Developing and Testing
    • CNTK Production Test Configurations
    • How to contribute to CNTK
  • Tutorial
  • Tutorial II
  • CNTK usage overview
  • Examples
  • Presentations
  • Multiple GPUs¹ and machines

Configuring CNTK

  • Config file overview
  • Simple Network Builder
  • BrainScript Network Builder
  • SGD block
  • Reader block
  • Train, Test, Eval
  • Top-level configurations

Describing Networks

  • Basic concepts
  • Expressions
  • Defining functions
  • Full Function Reference

Data readers

  • Text Format Reader
    • CNTK Text Format Reader
    • UCI Fast Reader (deprecated)
  • HTKMLF Reader
  • LM sequence reader
  • LU sequence reader
  • Image reader

Evaluating CNTK Models

  • Overview
  • C++ Evaluation Interface
  • C# Evaluation Interface
  • Evaluating Hidden Layers
  • C# Image Transforms for Evaluation

Advanced topics

  • Command line parsing rules
  • Top-level commands
  • Plot command
  • ConvertDBN command

¹ The topic related to the use of CNTK with a GPU is not available as a part of a remote course. This module can be delivered during classroom-based courses, but only by prior agreement, and only if both the trainer and all participants have laptops with supported NVIDIA GPUs (not provided by NobleProg). NobleProg cannot guarantee the availability of trainers with the required hardware.

appliedml Applied Machine Learning 14 hours

This training course is for people that would like to apply Machine Learning in practical applications.

Audience

This course is for data scientists and statisticians that have some familiarity with statistics and know how to program R (or Python or other chosen language). The emphasis of this course is on the practical aspects of data/model preparation, execution, post hoc analysis and visualization.

The purpose is to give practical applications to Machine Learning to participants interested in applying the methods at work.

Sector specific examples are used to make the training relevant to the audience.

  • Naive Bayes
  • Multinomial models
  • Bayesian categorical data analysis
  • Discriminant analysis
  • Linear regression
  • Logistic regression
  • GLM
  • EM Algorithm
  • Mixed Models
  • Additive Models
  • Classification
  • KNN
  • Bayesian Graphical Models
  • Factor Analysis (FA)
  • Principal Component Analysis (PCA)
  • Independent Component Analysis (ICA)
  • Support Vector Machines (SVM) for regression and classification
  • Boosting
  • Ensemble models
  • Neural networks
  • Hidden Markov Models (HMM)
  • Space State Models
  • Clustering
Neuralnettf Neural Networks Fundamentals using TensorFlow as Example 28 hours

This course will give you knowledge in neural networks and generally in machine learning algorithm,  deep learning (algorithms and applications).

This training is more focus on fundamentals, but will help you choosing the right technology : TensorFlow, Caffe, Teano, DeepDrive, Keras, etc. The examples are made in TensorFlow.

TensorFlow Basics

  • Creation, Initializing, Saving, and Restoring TensorFlow variables
  • Feeding, Reading and Preloading TensorFlow Data
  • How to use TensorFlow infrastructure to train models at scale
  • Visualizing and Evaluating models with TensorBoard

TensorFlow Mechanics

  • Inputs and Placeholders
  • Build the GraphS
    • Inference
    • Loss
    • Training
  • Train the Model
    • The Graph
    • The Session
    • Train Loop
  • Evaluate the Model
    • Build the Eval Graph
    • Eval Output

The Perceptron

  • Activation functions
  • The perceptron learning algorithm
  • Binary classification with the perceptron
  • Document classification with the perceptron
  • Limitations of the perceptron

From the Perceptron to Support Vector Machines

  • Kernels and the kernel trick
  • Maximum margin classification and support vectors

Artificial Neural Networks

  • Nonlinear decision boundaries
  • Feedforward and feedback artificial neural networks
  • Multilayer perceptrons
  • Minimizing the cost function
  • Forward propagation
  • Back propagation
  • Improving the way neural networks learn

Convolutional Neural Networks

  • Goals
  • Model Architecture
  • Principles
  • Code Organization
  • Launching and Training the Model
  • Evaluating a Model
rneuralnet Sieci Neuronowe w R 14 hours Szkolenie jest wprowadzeniem do wdrożenia sieci neuronowych w życiu codziennym wykorzystując oprogramowanie R-project.

Introduction to Neural Networks

  1. What are Neural Networks
  2. What is current status in applying neural networks
  3. Neural Networks vs regression models
  4. Supervised and Unsupervised learning

Overview of packages available

  1. nnet, neuralnet and others
  2. differences between packages and itls limitations
  3. Visualizing neural networks

Applying Neural Networks

  • Concept of neurons and neural networks
  • A simplified model of the brain
  • Opportunities neuron
  • XOR problem and the nature of the distribution of values
  • The polymorphic nature of the sigmoidal
  • Other functions activated
  • Construction of neural networks
  • Concept of neurons connect
  • Neural network as nodes
  • Building a network
  • Neurons
  • Layers
  • Scales
  • Input and output data
  • Range 0 to 1
  • Normalization
  • Learning Neural Networks
  • Backward Propagation
  • Steps propagation
  • Network training algorithms
  • range of application
  • Estimation
  • Problems with the possibility of approximation by
  • Examples
  • OCR and image pattern recognition
  • Other applications
  • Implementing a neural network modeling job predicting stock prices of listed
iop Inteligencja obliczeniowa w praktyce 7 hours

1. Obszary zastosowań

  • klasyfikacja (metody jakościowe, np. WTA)
  • regresja (metody ilościowe, np. próg decyzyjny)

2. Surowe dane

3. Przetwarzanie wstępne danych, sygnałów (np. normalizacja, PCA, FFT itp.)

4. Dobór elementów do zbioru uczącego i testowego (np. walidacja krzyżowa)

5.  Wybór metody inteligencji obliczeniowej

6.  Optymalizacja parametrów treningu (np. algorytmy genetyczne)

7. Ocena uzyskanych wyników (np. krzywa ROC)

8. Przykładowe zastosowania MIO:

  • rozpoznawanie osób na podstawie gestów z ekranu
  • rozpoznawanie gestów, ruchów dłonią
  • identyfikacja rodzaju atramentu i papieru
  • diagnozowanie dysfunkcji mięśnia sercowego
  • analiza lotnych związków organicznych przy użyciu elektronicznego nosa (klasyfikacja gatunków herbaty i aproksymacja stężenia fenolu)
  • szacowanie wypracowania pompy wyporowej
aiint Artificial Intelligence Overview 7 hours

Kurs ten został stworzony dla menadżerów, architektów, analityków biznesowych i systemowych, menedżerów oprogramowania oraz wszystkich zainteresowanych przeglądem stosowania sztucznej inteligencji i prognozą dla jej rozwoju.

Artificial Intelligence History

  • Intelligent Agents

Problem Solving

  • Solving Problems by Searching
  • Beyond Classical Search
  • Adversarial Search
  • Constraint Satisfaction Problems

Knowledge and Reasoning

  • Logical Agents
  • First-Order Logic
  • Inference in First-Order Logic
  • Classical Planning
  • Planning and Acting in the Real World
  • Knowledge Representation

Uncertain Knowledge and Reasoning

  • Quantifying Uncertainty
  • Probabilistic Reasoning
  • Probabilistic Reasoning over Time
  • Making Simple Decisions
  • Making Complex Decisions

Learning

  • Learning from Examples
  • Knowledge in Learning
  • Learning Probabilistic Models
  • Reinforcement Learning

Communicating, Perceiving, and Acting;

  • Natural Language Processing
  • Natural Language for Communication
  • Perception
  • Robotics

Conclusions

  • Philosophical Foundations
  • AI: The Present and Future
mtdintob Metody Inteligencji Obliczeniowej 7 hours

1. Wstęp Sztuczna inteligencja

a. słaba i silna sztuczna inteligencja

b. sztuczna inteligencja a inteligencja obliczeniowa

c. klasyfikacja metod inteligencji obliczeniowej

d. analogie do systemów żywych

2. Metody inteligencji obliczeniowej

a. sztuczne sieci neuronowe

  • klasyfikacja i typy sieci neuronowych
  • model sztucznego neuronu
  • topologia
  • metody i algorytmy uczenia
  • sieci neuronowe: SOM, MLP, PNN, LVQ, RNN, RBF, GRNN

b. systemy rozmyte

  • logika rozmyta
  • zbiory rozmyte i funkcje przynależności
  • wnioskowanie przybliżone
  • zasada działania
  • model Mamdani i Sugeno

c. maszyna wektorów nośnych

  • zasada działania
  • typy funkcji jądra
  • typy wielokrotnej klasyfikacji
  • mocne i słabe strony

d. obliczenia ewolucyjne

  • algorytmy genetyczne
  • metody selekcji
  • skalowanie funkcji przystosowania
  • operatory genetyczne
  • porównanie algorytmów ewolucyjnych

e. inteligencja roju

f. inteligentne agenty

g. algorytm knajbliższych sąsiadów

h. systemy hybrydowe

  • ewolucyjnoneuronowe
  • neuronoworozmyte
  • ewolucyjnorozmyte
sysagent Systemy wieloagentowe 7 hours

1. Wstęp systemy wieloagentowe

a. czym jest agent programowy

b. rodzaje agentów

c. platformawieloagentowa i społeczność agentów

d. analogia do systemów żywych

2. Teoria

a. Architektury systemów wieloagentowych

  • architektury logiczne
  • architektury reaktywne
  • architektury BDI (belief, desires, intentions)
  • architektury AGR (Agent/Group/Role)
  • inne architektury

b. Inteligencja agenta i interakcja z otoczeniem

  • pozyskiwanie i gromadzenie wiedzy
  • interakcja ze środowiskiem w którym funkcjonuje agent
  • komunikacja i interakcja z innymi agentami (wymiana wiedzy)
  • rozwiązywanie konfliktów (negocjacje)
  • planowanie i podejmowanie decyzji

c. Wybrane algorytmy społecznościowe

  • kolonia mrówek
  • stado (ławica, rój cząstek)
pjn Przetwarzanie języka naturalnego 7 hours

1. Wprowadzenie

2. Zastosowania NLP

  • Podstawowe pojęcia
  • Narzędzia NLP

3. Podstawy języka Perl

  • Struktury danych
  • Wyrażenia regularne
  • Parsowanie i tokenizacja

4 . Podstawy narzędzi RDBMS

  • Pająki internetowe
  • Korpus tekstowy
  • Własności statystyczne
  • Listy stopsłów
  • Indeksowanie dokumentów

5. Wyszukiwarka dokumentów

  • analiza leksykalna
  • wyszukiwanie wzorca
  • słowniki i automaty słownikowe
  • analiza morfologiczna
  • techniki ngramów
  • podobieństwo dokumentów

Other regions

Szkolenie Sieci Neuronowe w Olsztyn, szkolenie wieczorowe Sieci Neuronowe w Olsztyn, szkolenie weekendowe Sieci Neuronowe w Olsztyn, Sieci Neuronowe boot camp w Olsztyn, kurs zdalny Sieci Neuronowe w Olsztyn , Kurs Sieci Neuronowe w Olsztyn, nauczanie wirtualne Sieci Neuronowe w Olsztyn, Trener Sieci Neuronowe w Olsztyn, nauka przez internet Sieci Neuronowe w Olsztyn, edukacja zdalna Sieci Neuronowe w Olsztyn, wykładowca Sieci Neuronowe w Olsztyn ,Kursy Sieci Neuronowe w Olsztyn, lekcje UML w Olsztyn, kurs online Sieci Neuronowe w Olsztyn

Kursy w promocyjnej cenie

Szkolenie Miejscowość Data Kursu Cena szkolenia [Zdalne / Stacjonarne]
Cassandra for Developers Łódź, ul. Tatrzańska 11 pon., 2017-02-27 09:00 17117PLN / 6087PLN
Microsoft Office Excel - poziom średniozaawansowany Kraków, ul. Rzemieślnicza 1 pon., 2017-02-27 09:00 1485PLN / 1295PLN
Microsoft Office Excel - poziom podstawowy Szczecin, ul. Małopolska 23 wt., 2017-02-28 09:00 1485PLN / 995PLN
Oracle 11g - Programowanie w PL/SQL - wprowadzenie Zielona Góra, ul. Reja 6 wt., 2017-02-28 09:00 15048PLN / 5310PLN
Język UML w Enterprise Architect - warsztaty Bydgoszcz, ul. Dworcowa 94 pon., 2017-03-06 09:00 5940PLN / 3720PLN
Techniki DTP (InDesign, Photoshop, Illustrator, Acrobat) Rzeszów, Plac Wolności 13 pon., 2017-03-06 09:00 5940PLN / 3730PLN
Bezstresowe zarządzanie sobą w czasie - jak mieć zawsze określone cele i być efektywnym w ich realizacji. Olsztyn, ul. Kajki 3/1 wt., 2017-03-07 09:00 2772PLN / 1340PLN
Understanding Your Brand and Your Business Katowice ul. Opolska 22 śr., 2017-03-08 09:00 15008PLN / 5598PLN
Visual Basic for Applications (VBA) w Excel - poziom zaawansowany Gdynia, ul. Ejsmonda 2 śr., 2017-03-08 09:00 2772PLN / 1974PLN
Programowanie w C# 5.0 z Visual Studio 2012 Lublin, ul. Spadochroniarzy 9 pon., 2017-03-13 09:00 5940PLN / 2963PLN
Automatyzacja testów za pomocą Selenium Warszawa, ul. Złota 3/11 pon., 2017-03-20 09:00 7722PLN / 3174PLN
Microsoft Office Excel - poziom średniozaawansowany Poznań, Garbary 100/63 wt., 2017-03-21 09:00 1485PLN / 895PLN
Programowanie w ASP.NET MVC 5 Gdynia, ul. Ejsmonda 2 śr., 2017-03-22 09:00 5841PLN / 2673PLN
Wprowadzenie do CSS3 Poznań, Garbary 100/63 śr., 2017-03-22 09:00 1881PLN / 952PLN
Analiza i projektowanie obiektowe za pomocą języka UML Warszawa, ul. Złota 3/11 śr., 2017-03-22 09:00 5940PLN / 2580PLN
Visual Basic for Applications (VBA) w Excel - poziom zaawansowany Gdynia, ul. Ejsmonda 2 śr., 2017-03-29 09:00 2772PLN / 1974PLN
Microsoft Office Excel - poziom podstawowy Szczecin, ul. Małopolska 23 czw., 2017-03-30 09:00 1485PLN / 995PLN
Tworzenie aplikacji internetowych w języku PHP Warszawa, ul. Złota 3/11 wt., 2017-04-04 09:00 4752PLN / 1958PLN
Microsoft Office Excel - poziom średniozaawansowany Lublin, ul. Spadochroniarzy 9 pon., 2017-04-10 09:00 1485PLN / 1195PLN
6 kapeluszy myślowych wg Edwarda de Bono Gdańsk, ul. Powstańców Warszawskich 45 czw., 2017-04-13 09:00 5148PLN / 1926PLN
Microsoft Office Excel - poziom średniozaawansowany Olsztyn, ul. Kajki 3/1 śr., 2017-04-26 09:00 1485PLN / 995PLN
BPMN 2.0 dla Analityków Biznesowych Wrocław, ul.Ludwika Rydygiera 2a/22 śr., 2017-05-17 09:00 6200PLN / 2667PLN
Adobe Photoshop Elements Gdynia, ul. Ejsmonda 2 śr., 2017-06-07 09:00 1881PLN / 1327PLN
Adobe Photoshop Elements Gdańsk, ul. Powstańców Warszawskich 45 śr., 2017-06-07 09:00 1881PLN / 1327PLN
Drools Rules Administration Wrocław, ul.Ludwika Rydygiera 2a/22 śr., 2017-06-14 09:00 21196PLN / 7023PLN

Newsletter z promocjami

Zapisz się na nasz newsletter i otrzymuj informacje o aktualnych zniżkach na kursy otwarte.
Szanujemy Twoją prywatność, dlatego Twój e-mail będzie wykorzystywany jedynie w celu wysyłki naszego newslettera, nie będzie udostępniony ani sprzedany osobom trzecim.
W dowolnej chwili możesz zmienić swoje preferencje co do otrzymywanego newslettera bądź całkowicie się z niego wypisać.

Zaufali nam