Online lub na miejscu, prowadzone przez instruktora kursy szkoleniowe na żywo dotyczące sieci neuronowych demonstrują poprzez interaktywną dyskusję i praktyczne ćwiczenia, jak konstruować sieci neuronowe przy użyciu wielu zestawów narzędzi i bibliotek, głównie typu open source, a także jak wykorzystywać moc zaawansowanego sprzętu (GPU ) oraz techniki optymalizacyjne obejmujące przetwarzanie rozproszone i duże zbiory danych. Nasze kursy sieci neuronowych są oparte na popularnych językach programowania, takich jak Python, Java, język R i potężnych bibliotekach, w tym TensorFlow, Torch, Caffe, Theano i innych. Nasze kursy dotyczące sieci neuronowych obejmują zarówno teorię, jak i implementację przy użyciu wielu implementacji sieci neuronowych, takich jak głębokie sieci neuronowe (DNN), konwolucyjne sieci neuronowe (CNN) i rekurencyjne sieci neuronowe (RNN). Szkolenie z sieci neuronowych jest dostępne jako "szkolenie online na żywo" lub "szkolenie na miejscu". Szkolenie na żywo online (inaczej "zdalne szkolenie na żywo") odbywa się za pomocą interaktywnego, zdalnego pulpitu . Szkolenie na żywo na miejscu może odbywać się lokalnie w siedzibie klienta w Lublin lub w korporacyjnych centrach szkoleniowych NobleProg w Lublin. NobleProg — Twój lokalny dostawca szkoleń
Lublin
Hotel Trzy Róże, Zemborzyce Dolne 96a, Lublin, Polska, 20-515
Sale szkoleniowe wyposażone są w nowoczesny sprzęt audiowizualny, umożliwiający efektywne prezentacje oraz interaktywne sesje szkoleniowe. Dodatkowo, dostępny jest szybki i niezawodny Internet, który umożliwia łatwy dostęp do materiałów online oraz komunikację z zespołem szkoleniowym. Obiekt znajduje się jedynie 9 kilometrów od centrum miasta Lublina. Zlokalizowany jest przy głównej trasie S19 w kierunku Kraśnika, zapewniając dogodny dojazd zarówno z Rzeszowa, Warszawy, Łodzi, jak i Białegostoku. Dzięki tej centralnej lokalizacji, uczestnicy mogą szybko i wygodnie dotrzeć na miejsce szkolenia, co dodatkowo ułatwia organizację wydarzenia i zapewnia komfort uczestnictwa.
To prowadzone przez instruktora szkolenie na żywo w Lublin (na miejscu lub zdalnie) jest przeznaczone dla zaawansowanych profesjonalistów, którzy chcą poznać najnowocześniejsze techniki XAI dla modeli głębokiego uczenia się, z naciskiem na budowanie interpretowalnych systemów sztucznej inteligencji.
Pod koniec tego szkolenia uczestnicy będą w stanie
Zrozumieć wyzwania związane z wyjaśnialnością w głębokim uczeniu się.
Wdrożyć zaawansowane techniki XAI dla sieci neuronowych.
Interpretować decyzje podejmowane przez modele głębokiego uczenia.
Ocenić kompromisy między wydajnością a przejrzystością.
Jest to 4-dniowy kurs wprowadzający sztuczną inteligencję i jej zastosowanie przy użyciu języka programowania Python. Istnieje możliwość dodatkowego dnia na podjęcie projektu AI po ukończeniu tego kursu.
To prowadzone przez instruktora szkolenie na żywo (online lub na miejscu) jest przeznaczone dla programistów i analityków danych, którzy chcą nauczyć się podstaw Deep Reinforcement Learning podczas tworzenia agenta Deep Learning.
Po zakończeniu tego szkolenia uczestnicy będą w stanie
Zrozumienie kluczowych koncepcji stojących za Deep Reinforcement Learning i umiejętność odróżnienia go od uczenia maszynowego.
Zastosowanie zaawansowanych algorytmów Reinforcement Learning do rozwiązywania rzeczywistych problemów.
Kurs ten został stworzony dla menadżerów, architektów, analityków biznesowych i systemowych, menedżerów oprogramowania oraz wszystkich zainteresowanych przeglądem stosowania sztucznej inteligencji i prognozą dla jej rozwoju.
Kurs obejmuje sztuczną inteligencję (z naciskiem na Machine Learning i głębokie uczenie) w przemyśle motoryzacyjnym. Pomaga określić, która technologia może być (potencjalnie) wykorzystywana w wielu sytuacjach w samochodzie: od prostej automatyzacji, rozpoznawania obrazu po autonomiczne podejmowanie decyzji.
To szkolenie prowadzone przez instruktora w Lublin (online lub na miejscu) jest przeznaczone dla uczestników na poziomie początkującego, którzy chcą nauczyć się podstawowych pojęć z zakresu prawdopodobieństwa, statystyki, programowania i uczenia maszynowego, a następnie zastosować je w rozwoju sztucznej inteligencji.
Na zakończenie tego szkolenia uczestnicy będą w stanie:
Rozumieć podstawowe pojęcia z prawdopodobieństwa i statystyki oraz zastosować je w realnych scenariuszach.
Pisać i rozumieć kod programowania w stylach proceduralnym, funkcjonalnym i obiektowym.
Wdrażać techniki uczenia maszynowego, takie jak klasyfikacja, klastrowanie i sieci neuronowe.
Tworzyć rozwiązania AI za pomocą silników reguł i systemów ekspertów do rozwiązywania problemów.
Sztuczna sieć neuronowa to obliczeniowy model danych wykorzystywany w rozwoju Artificial Intelligence (AI) systemów zdolnych do wykonywania "inteligentnych" zadań. Neural Networks są powszechnie używane w aplikacjach Machine Learning (ML), które same w sobie są jedną z implementacji sztucznej inteligencji. Deep Learning jest podzbiorem ML.
Jest to 4-dniowy kurs wprowadzający w sztuczną inteligencję i jej zastosowanie. Istnieje możliwość odbycia dodatkowego dnia w celu podjęcia projektu AI po ukończeniu tego kursu.
To szkolenie prowadzone przez instruktora, dostępne online lub na miejscu, skierowane jest do pośrednio zaawansowanych naukowców danych i statystyków, którzy chcą przygotować dane, budować modele oraz stosować techniki uczenia maszynowego w swoich zawodowych dziedzinach.
Po ukończeniu tego szkolenia uczestnicy będą mogli:
Zrozumieć i wdrażać różne algorytmy Machine Learning.
Przygotowywać dane i modele do zastosowań uczenia maszynowego.
Przeprowadzać analizy post hoc i skutecznie wizualizować wyniki.
Zastosować techniki uczenia maszynowego w rzeczywistych, sektoralnych scenariuszach.
To prowadzone przez instruktora szkolenie na żywo w Lublin (na miejscu lub zdalnie) jest przeznaczone dla naukowców i programistów, którzy chcą używać Chainer do budowania i trenowania sieci neuronowych w Python, jednocześnie ułatwiając debugowanie kodu.
Pod koniec tego szkolenia uczestnicy będą mogli
Skonfigurować niezbędne środowisko programistyczne, aby rozpocząć tworzenie modeli sieci neuronowych.
Definiować i wdrażać modele sieci neuronowych przy użyciu zrozumiałego kodu źródłowego.
Wykonywać przykłady i modyfikować istniejące algorytmy w celu optymalizacji modeli szkoleniowych głębokiego uczenia się, jednocześnie wykorzystując GPU w celu uzyskania wysokiej wydajności.
To ten szkolenie prowadzone przez instruktora w Lublin (online lub na miejscu) wprowadza w dziedzinę rozpoznawania wzorców i uczenia maszynowego. Dotyka ono praktycznych zastosowań w statystyce, informatyce, przetwarzaniu sygnałów, komputerowym rozpoznawaniu wzorców, górnictwie danych i bioinformatyce.
Na zakończenie tego szkolenia uczestnicy będą w stanie:
Zastosować podstawowe metody statystyczne do rozpoznawania wzorców.
Wykorzystać kluczowe modele, takie jak sieci neuronowe i metody jąder do analizy danych.
Wdrożyć zaawansowane techniki do rozwiązywania złożonych problemów.
Typ: Szkolenie teoretyczne z aplikacjami ustalonymi wcześniej ze studentami na Lasagne lub Keras w zależności od grupy dydaktycznej.
Metoda nauczania: prezentacja, dyskusja i studia przypadków
Sztuczna inteligencja zrewolucjonizowała wiele dziedzin nauki, a obecnie zaczyna rewolucjonizować wiele sektorów gospodarki (przemysł, medycynę, komunikację itp.). Jednak sposób, w jaki jest ona przedstawiana w mediach głównego nurtu, jest często fantazją, daleką od realiów domen Machine Learning i Deep Learning. Celem tego kursu jest zapewnienie inżynierom, którzy już opanowali narzędzia informatyczne (w tym podstawową wiedzę na temat programowania oprogramowania), wprowadzenia do Deep Learning i jego różnych specjalistycznych obszarów, a tym samym do głównych istniejących obecnie architektur sieciowych. Chociaż podstawy matematyczne są przywoływane podczas kursu, poziom matematyki taki jak BAC + 2 jest zalecany dla większego komfortu. Całkowicie możliwe jest pominięcie matematyki w celu zachowania jedynie wizji "systemów", ale takie podejście znacznie ograniczy zrozumienie tematu.
To prowadzone przez instruktora szkolenie na żywo w Lublin (na miejscu lub zdalnie) jest przeznaczone dla inżynierów, którzy chcą dowiedzieć się o zastosowaniu sztucznej inteligencji w systemach mechatronicznych.
Pod koniec tego szkolenia uczestnicy będą mogli
Uzyskać przegląd sztucznej inteligencji, uczenia maszynowego i inteligencji obliczeniowej.
Zrozumieć koncepcje sieci neuronowych i różnych metod uczenia się.
Skutecznie wybierać metody sztucznej inteligencji do rozwiązywania rzeczywistych problemów.
Wdrożyć aplikacje sztucznej inteligencji w inżynierii mechatronicznej.
Ta sesja szkoleniowa w klasie będzie zawierać prezentacje i przykłady komputerowe oraz ćwiczenia studium przypadku do wykonania z odpowiednimi bibliotekami sieci neuronowych i sieci głębokich
W tym instruktażowym szkoleniu na żywo w Lublin uczestnicy dowiedzą się, jak wykorzystać innowacje w procesorach TPU, aby zmaksymalizować wydajność własnych aplikacji AI.
Po zakończeniu szkolenia uczestnicy będą w stanie
Trenowanie różnych typów sieci neuronowych na dużych ilościach danych.
Użycie procesorów TPU do przyspieszenia procesu wnioskowania nawet o dwa rzędy wielkości.
Użyj TPU do przetwarzania intensywnych aplikacji, takich jak wyszukiwanie obrazów, widzenie w chmurze i zdjęcia.
Ten kurs rozpoczyna się od przekazania wiedzy koncepcyjnej na temat sieci neuronowych i ogólnie algorytmów uczenia maszynowego, głębokiego uczenia się (algorytmy i aplikacje).
Część 1 (40%) tego szkolenia koncentruje się bardziej na podstawach, ale pomoże ci wybrać odpowiednią technologię: TensorFlow, Caffe, Theano, DeepDrive, Keras itp.
Część 2 (20%) tego szkolenia wprowadza Theano - bibliotekę Pythona, która ułatwia pisanie modeli głębokiego uczenia się.
Część trzecia (40%) szkolenia będzie w znacznym stopniu oparta na Tensorflow - API drugiej generacji otwartej biblioteki oprogramowania Google do uczenia głębokiego. Przykłady i ćwiczenia zostaną wykonane w TensorFlow.
Uczestnicy
Ten kurs jest przeznaczony dla inżynierów, którzy chcą wykorzystać TensorFlow w swoich projektach Deep Learning
Po ukończeniu tego kursu uczestnicy będą
dobrze rozumie głębokie sieci neuronowe (DNN), CNN i RNN
rozumieć TensorFlow’ strukturę i mechanizmy wdrażania
być w stanie wykonać zadania i konfigurację instalacji / środowiska produkcyjnego / architektury
być w stanie ocenić jakość kodu, przeprowadzić debugowanie, monitorowanie
być w stanie wdrożyć zaawansowaną produkcję, taką jak modele szkoleniowe, tworzenie wykresów i rejestrowanie
Więcej...
Ostatnia aktualizacja:
Opinie uczestników (8)
Dobrze omówione przez trenera przykłady ćwiczeń
Mariusz - Politechnika Opolska
Szkolenie - Artificial Intelligence (AI) for Mechatronics
Świetny kontakt z uczestnikami, wiedza praktyczna co bardzo się ceni. Dostosowanie toku / tempa. Duuuży plus, mega pozytywny instruktor, aż szkoda że szkolenie trwało tylko 2 dni.
Marcin Mikielewicz - TECNOBIT SLU
Szkolenie - Introduction Deep Learning & Réseaux de neurones pour l’ingénieur
Trener był profesjonalistą w dziedzinie tematu i doskonało łączył teorię z praktyką.
Fahad Malalla - Tatweer Petroleum
Szkolenie - Applied AI from Scratch in Python
Przetłumaczone przez sztuczną inteligencję
Duża wiedza teoretyczna i praktyczna prowadzących. Komunikatywność prowadzących. W trakcie kursu można było zadawać pytania i uzyskać satysfakcjonujące odpowiedzi.
Kamil Kurek - ING Bank Slaski S.A.; Kamil Kurek Programowanie
Szkolenie - Understanding Deep Neural Networks
Lubię nowe wglądy w głębokim uczeniu maszynowym.
Josip Arneric
Szkolenie - Neural Network in R
Przetłumaczone przez sztuczną inteligencję
Trener bardzo zrozumiale wytłumaczył trudne i zaawansowane tematy.
Leszek K
Szkolenie - Artificial Intelligence Overview
Anna stworzyła wspaniałe środowisko do zadawania pytań i uczenia się. Bawiliśmy się wspaniale i jednocześnie uczymy się wielu rzeczy.
Gudrun Bickelq
Szkolenie - Introduction to the use of neural networks
Przetłumaczone przez sztuczną inteligencję
Było bardzo interaktywne i mniej formalne, niż się spodziewałem. Porozmawialiśmy na wiele tematów w tym czasie, a trener zawsze był gotowy do bardziej szczegółowego lub ogólnej dyskusji o tych tematach oraz ich związki. Czuję, że szkolenie podarowało mi narzędzia do dalszego uczenia się, a nie było to jednorazowe spotkanie, w którym nauka kończy się po zakończeniu sesji, co jest bardzo ważne w świetle skali i złożoności tematu.
Jonathan Blease
Szkolenie - Artificial Neural Networks, Machine Learning, Deep Thinking