Lokalne, prowadzone przez instruktora kursy szkoleniowe TensorFlow na żywo demonstrują poprzez interaktywną dyskusję i praktyczne ćwiczenia, jak korzystać z systemu TensorFlow w celu ułatwienia badań nad uczeniem maszynowym oraz szybkiego i łatwego przejścia od prototypu badawczego do systemu produkcyjnego. Szkolenie TensorFlow jest dostępne jako „szkolenie online na żywo” lub „szkolenie na żywo na miejscu”. Szkolenie na żywo online (inaczej "zdalne szkolenie na żywo") odbywa się za pomocą interaktywnego, zdalnego pulpitu . Szkolenie na żywo na miejscu może odbywać się lokalnie w siedzibie klienta w Bielsko-Biała lub w korporacyjnych centrach szkoleniowych NobleProg w Bielsko-Biała. NobleProg — Twój lokalny dostawca szkoleń
Bielsko-Biała
ZIAD, Armii Krajowej 220, Bielsko Biała, Polska, 43-316
Sale szkoleniowe NobleProg w Bielsku - Białej mieszczą się w budynku ZIAD na parterze (Zakład Informatyki, Automatyki i Doskonalenia Zawodowego (przy ulicy Aleji Armii Krajowej 220 a. Budynki ZIAD zlokalizowane są u podnóża stoku Szyndzielni. Budynek posiada podjazd dla osób niepełnosprawnych. Z dworca PKS należy skierować się na przystanek Warszawska Dworzec, w kierunku na północ (po tej samej stronie co dworzec PKS). Autobus nr 8 w kierunku Szyndzielnia jedzie około 22 minut (9 przystanków). Przystankiem docelowym jest Armii Krajowej ZIAD, który znajduję się 400 metrów od sali szkoleniowej ZIAD. W ten sam sposób można dostać się do ZIAD z dworca PKP Bielsko Biała Główna.
To prowadzone przez instruktora szkolenie na żywo w Bielsko-Biała (na miejscu lub zdalnie) jest przeznaczone dla zaawansowanych profesjonalistów, którzy chcą pogłębić swoją wiedzę na temat wizji komputerowej i poznać możliwości TensorFlow w zakresie opracowywania zaawansowanych modeli wizyjnych przy użyciu Google Colab.
Pod koniec tego szkolenia uczestnicy będą w stanie
Budować i trenować konwolucyjne sieci neuronowe (CNN) przy użyciu TensorFlow.
Wykorzystać Google Colab do skalowalnego i wydajnego rozwoju modeli opartych na chmurze.
Wdrażać techniki wstępnego przetwarzania obrazu dla zadań wizji komputerowej.
Wdrażanie modeli wizji komputerowej do rzeczywistych zastosowań.
Wykorzystanie uczenia transferowego w celu zwiększenia wydajności modeli CNN.
Wizualizacja i interpretacja wyników modeli klasyfikacji obrazów.
To prowadzone przez instruktora szkolenie na żywo w Bielsko-Biała (na miejscu lub zdalnie) jest przeznaczone dla średnio zaawansowanych naukowców zajmujących się danymi i programistów, którzy chcą zrozumieć i zastosować techniki głębokiego uczenia się przy użyciu środowiska Google Colab.
Pod koniec tego szkolenia uczestnicy będą w stanie
Konfigurować i nawigować Google Colab dla projektów głębokiego uczenia.
Zrozumieć podstawy sieci neuronowych.
Implementować modele głębokiego uczenia się przy użyciu TensorFlow.
Trenować i oceniać modele głębokiego uczenia.
Wykorzystywać zaawansowane funkcje TensorFlow do głębokiego uczenia.
Jest to 4-dniowy kurs wprowadzający w sztuczną inteligencję i jej zastosowanie. Istnieje możliwość odbycia dodatkowego dnia w celu podjęcia projektu AI po ukończeniu tego kursu.
W tym instruktażowym szkoleniu na żywo w Bielsko-Biała uczestnicy nauczą się korzystać z Python bibliotek dla NLP, tworząc aplikację, która przetwarza zestaw zdjęć i generuje podpisy.
Po zakończeniu tego szkolenia uczestnicy będą w stanie
Projektowanie i kodowanie DL dla NLP przy użyciu Python bibliotek.
Tworzenie Python kodu, który odczytuje ogromną kolekcję zdjęć i generuje słowa kluczowe.
Stwórz Pythonkod, który generuje podpisy na podstawie wykrytych słów kluczowych.
Uczestnicy
Ten kurs jest odpowiedni dla Deep Learning badaczy i inżynierów zainteresowanych wykorzystaniem dostępnych narzędzi (głównie open source) do analizy obrazów komputerowych
Ten kurs zawiera działające przykłady.
Szkolenie na żywo prowadzone przez instruktora (na miejscu lub zdalnie) jest przeznaczone dla analityków danych, którzy chcą wykorzystać TensorFlow do analizy danych dotyczących potencjalnych oszustw.
Po zakończeniu tego szkolenia uczestnicy będą w stanie
Stworzyć model wykrywania oszustw w Python i TensorFlow.
Zbudować regresje liniowe i modele regresji liniowej do przewidywania oszustw.
Opracować kompleksową aplikację AI do analizy danych dotyczących oszustw.
Szkolenie na żywo prowadzone przez instruktora (na miejscu lub zdalnie) jest przeznaczone dla programistów i analityków danych, którzy chcą korzystać z Tensorflow 2.x do tworzenia predyktorów, klasyfikatorów, modeli generatywnych, sieci neuronowych itp.
Po zakończeniu tego szkolenia uczestnicy będą w stanie
Instalacja i konfiguracja TensorFlow 2.x.
Zrozumienie korzyści płynących z TensorFlow 2.x w porównaniu z poprzednimi wersjami.
Buduj modele głębokiego uczenia.
Wdrożenie zaawansowanego klasyfikatora obrazów.
Deploy a deep learning model to the cloud, mobile and IoT devices.
W tym prowadzonym przez instruktora szkoleniu na żywo w Bielsko-Biała (online lub na miejscu) uczestnicy dowiedzą się, jak skonfigurować i używać TensorFlow Serving do wdrażania modeli ML i zarządzania nimi w środowisku produkcyjnym.
Po zakończeniu tego szkolenia uczestnicy będą w stanie
Trenuj, eksportuj i obsługuj różne modele TensorFlow.
Testowanie i wdrażanie algorytmów przy użyciu jednej architektury i zestawu interfejsów API.
Rozszerzenie TensorFlow Serving w celu obsługi innych typów modeli poza modelami TensorFlow.
TensorFlow to API drugiej generacji Google' biblioteki oprogramowania open source do uczenia głębokiego. System został zaprojektowany w celu ułatwienia badań nad uczeniem maszynowym oraz szybkiego i łatwego przejścia od prototypu badawczego do systemu produkcyjnego.
Publiczność
Ten kurs jest przeznaczony dla inżynierów, którzy chcą wykorzystać TensorFlow w swoich projektach Deep Learning
Po ukończeniu tego kursu uczestnicy będą
rozumieć TensorFlow’strukturę i mechanizmy wdrażania
być w stanie przeprowadzić zadania i konfigurację instalacji / środowiska produkcyjnego / architektury
być w stanie ocenić jakość kodu, przeprowadzić debugowanie, monitorowanie
być w stanie wdrożyć zaawansowaną produkcję, taką jak modele szkoleniowe, tworzenie wykresów i rejestrowanie
Kurs ten bada, na konkretnych przykładach, zastosowanie Tensor Flow do celów rozpoznawania obrazów
Publiczność
Ten kurs jest przeznaczony dla inżynierów pragnących wykorzystać TensorFlow do celów rozpoznawania obrazów
Po ukończeniu tego kursu uczestnicy będą w stanie
zrozumieć strukturę i mechanizmy wdrażania TensorFlow&rsquo
przeprowadzać zadania i konfigurację instalacji / środowiska produkcyjnego / architektury
To prowadzone przez instruktora szkolenie na żywo w Bielsko-Biała (online lub na miejscu) jest przeznaczone dla naukowców zajmujących się danymi, którzy chcą przejść od szkolenia pojedynczego modelu ML do wdrożenia wielu modeli ML do produkcji.
Po zakończeniu tego szkolenia uczestnicy będą w stanie
Instalacja i konfiguracja TFX oraz narzędzi innych firm.
Używanie TFX do tworzenia i zarządzania kompletnym potokiem produkcyjnym ML.
Praca z komponentami TFX w celu przeprowadzenia modelowania, szkolenia, obsługi wnioskowania i zarządzania wdrożeniami.
Wdrażaj funkcje uczenia maszynowego w aplikacjach internetowych, aplikacjach mobilnych, urządzeniach IoT i nie tylko.
W tym instruktażowym szkoleniu na żywo w Bielsko-Biała uczestnicy dowiedzą się, jak wykorzystać innowacje w procesorach TPU, aby zmaksymalizować wydajność własnych aplikacji AI.
Po zakończeniu szkolenia uczestnicy będą w stanie
Trenowanie różnych typów sieci neuronowych na dużych ilościach danych.
Użycie procesorów TPU do przyspieszenia procesu wnioskowania nawet o dwa rzędy wielkości.
Użyj TPU do przetwarzania intensywnych aplikacji, takich jak wyszukiwanie obrazów, widzenie w chmurze i zdjęcia.
TensorFlow™ to biblioteka oprogramowania typu open source do obliczeń numerycznych z wykorzystaniem wykresów przepływu danych.
SyntaxNet to neuronowa platforma przetwarzania języka naturalnego dla TensorFlow.
Word2Vec jest używany do uczenia się wektorowych reprezentacji słów, zwanych "word embeddings". Word2vec jest szczególnie wydajnym obliczeniowo modelem predykcyjnym do uczenia się osadzania słów z surowego tekstu. Występuje on w dwóch wersjach: Continuous Bag-of-Words model (CBOW) i Skip-Gram model (rozdział 3.1 i 3.2 w Mikolov et al.).
Używane w tandemie, SyntaxNet i Word2Vec pozwalają użytkownikom generować wyuczone modele osadzania z danych wejściowych języka naturalnego.
Publiczność
Ten kurs jest skierowany do programistów i inżynierów, którzy zamierzają pracować z modelami SyntaxNet i Word2Vec w swoich wykresach TensorFlow.
Po ukończeniu tego kursu uczestnicy będą
rozumieć TensorFlow’strukturę i mechanizmy wdrażania
być w stanie przeprowadzić zadania i konfigurację instalacji / środowiska produkcyjnego / architektury
być w stanie ocenić jakość kodu, przeprowadzić debugowanie, monitorowanie
być w stanie wdrożyć zaawansowaną produkcję, taką jak modele szkoleniowe, osadzanie terminów, tworzenie wykresów i rejestrowanie
Ten kurs rozpoczyna się od przekazania wiedzy koncepcyjnej na temat sieci neuronowych i ogólnie algorytmów uczenia maszynowego, głębokiego uczenia się (algorytmy i aplikacje).
Część 1 (40%) tego szkolenia koncentruje się bardziej na podstawach, ale pomoże ci wybrać odpowiednią technologię: TensorFlow, Caffe, Theano, DeepDrive, Keras itp.
Część 2 (20%) tego szkolenia wprowadza Theano - bibliotekę Pythona, która ułatwia pisanie modeli głębokiego uczenia się.
Część trzecia (40%) szkolenia będzie w znacznym stopniu oparta na Tensorflow - API drugiej generacji otwartej biblioteki oprogramowania Google do uczenia głębokiego. Przykłady i ćwiczenia zostaną wykonane w TensorFlow.
Publiczność
Ten kurs jest przeznaczony dla inżynierów, którzy chcą wykorzystać TensorFlow w swoich projektach Deep Learning
Po ukończeniu tego kursu uczestnicy będą
dobrze rozumie głębokie sieci neuronowe (DNN), CNN i RNN
rozumieć TensorFlow’ strukturę i mechanizmy wdrażania
być w stanie wykonać zadania i konfigurację instalacji / środowiska produkcyjnego / architektury
być w stanie ocenić jakość kodu, przeprowadzić debugowanie, monitorowanie
być w stanie wdrożyć zaawansowaną produkcję, taką jak modele szkoleniowe, tworzenie wykresów i rejestrowanie
Więcej...
Ostatnia aktualizacja:
Opinie uczestników (6)
Trener wyjaśnił treść dobrze i był zaangażowany przez cały czas. Zatrzymywał się, aby zadać pytania, i pozwolił nam samodzielnie dojść do rozwiązań w niektórych praktycznych sesjach. Dojść do rozwiązań w niektórych praktycznych sesjach. Ponadto dostosował kurs do naszych potrzeb.
Robert Baker
Szkolenie - Deep Learning with TensorFlow 2.0
Przetłumaczone przez sztuczną inteligencję
Tomasz naprawdę dobrze znał informacje i kurs był dobrze dobrany.
Raju Krishnamurthy - Google
Szkolenie - TensorFlow Extended (TFX)
Przetłumaczone przez sztuczną inteligencję
Organizacja, przestrzegając proponowanego porządku obrad, wiedza trenera w tej dziedzinie
Ali Kattan - TWPI
Szkolenie - Natural Language Processing with TensorFlow
Przetłumaczone przez sztuczną inteligencję
Dużo wskazówek praktycznych
Pawel Dawidowski - ABB Sp. z o.o.
Szkolenie - Deep Learning with TensorFlow
Duża wiedza teoretyczna i praktyczna prowadzących. Komunikatywność prowadzących. W trakcie kursu można było zadawać pytania i uzyskać satysfakcjonujące odpowiedzi.
Kamil Kurek - ING Bank Slaski S.A.; Kamil Kurek Programowanie
Szkolenie - Understanding Deep Neural Networks
Odkładany, aktualny podejście lub CPI (TensorFlow, era, learn) do tworzenia uczenia maszynowego.