Szkolenia TensorFlow w Lublin

TensorFlow Training in Lublin
TensorFlow is an open source software library for deep learning.

Lublin, ul. Spadochroniarzy 9

Hotel Huzar
ul. Spadochroniarzy 9
20-043 Lublin
Poland
PL
Lublin, ul. Spadochroniarzy 9
Kursy w Lublinie organizujemy w salach szkoleniowych Hotelu Huzar.Read more

TensorFlow Course Events - Lublin

Kod Nazwa Miejscowość Czas trwania Data Kursu PHP Cena szkolenia [Zdalne / Stacjonarne]
dlv Deep Learning for Vision Lublin, ul. Spadochroniarzy 9 21 hours pon., 2017-07-03 09:00 28150PLN / 9280PLN
tfir TensorFlow for Image Recognition Lublin, ul. Spadochroniarzy 9 28 hours pon., 2017-07-24 09:00 25020PLN / 8582PLN
tsflw2v Natural Language Processing with TensorFlow Lublin, ul. Spadochroniarzy 9 35 hours pon., 2017-07-24 09:00 33600PLN / 11432PLN
tf101 Deep Learning with TensorFlow Lublin, ul. Spadochroniarzy 9 21 hours wt., 2017-07-25 09:00 13900PLN / 4962PLN
Neuralnettf Neural Networks Fundamentals using TensorFlow as Example Lublin, ul. Spadochroniarzy 9 28 hours wt., 2017-08-01 09:00 30980PLN / 10388PLN
dlv Deep Learning for Vision Lublin, ul. Spadochroniarzy 9 21 hours pon., 2017-08-28 09:00 28150PLN / 9280PLN
tf101 Deep Learning with TensorFlow Lublin, ul. Spadochroniarzy 9 21 hours pon., 2017-09-18 09:00 13900PLN / 4962PLN
tfir TensorFlow for Image Recognition Lublin, ul. Spadochroniarzy 9 28 hours pon., 2017-09-18 09:00 25020PLN / 8582PLN
Neuralnettf Neural Networks Fundamentals using TensorFlow as Example Lublin, ul. Spadochroniarzy 9 28 hours wt., 2017-09-26 09:00 30980PLN / 10388PLN
tsflw2v Natural Language Processing with TensorFlow Lublin, ul. Spadochroniarzy 9 35 hours pon., 2017-10-09 09:00 33600PLN / 11432PLN
dlv Deep Learning for Vision Lublin, ul. Spadochroniarzy 9 21 hours śr., 2017-10-18 09:00 28150PLN / 9280PLN
tf101 Deep Learning with TensorFlow Lublin, ul. Spadochroniarzy 9 21 hours śr., 2017-11-08 09:00 13900PLN / 4962PLN
tfir TensorFlow for Image Recognition Lublin, ul. Spadochroniarzy 9 28 hours pon., 2017-11-13 09:00 25020PLN / 8582PLN

Plany Kursów

Kod Nazwa Czas trwania Spis treści
tf101 Deep Learning with TensorFlow 21 hours

TensorFlow is a 2nd Generation API of Google's open source software library for Deep Learning. The system is designed to facilitate research in machine learning, and to make it quick and easy to transition from research prototype to production system.

Audience

This course is intended for engineers seeking to use TensorFlow for their Deep Learning projects

After completing this course, delegates will:

  • understand TensorFlow’s structure and deployment mechanisms
  • be able to carry out installation / production environment / architecture tasks and configuration
  • be able to assess code quality, perform debugging, monitoring
  • be able to implement advanced production like training models, building graphs and logging

Machine Learning and Recursive Neural Networks (RNN) basics

  • NN and RNN
  • Backprogation
  • Long short-term memory (LSTM)

TensorFlow Basics

  • Creation, Initializing, Saving, and Restoring TensorFlow variables
  • Feeding, Reading and Preloading TensorFlow Data
  • How to use TensorFlow infrastructure to train models at scale
  • Visualizing and Evaluating models with TensorBoard

TensorFlow Mechanics 101

  • Prepare the Data
    • Download
    • Inputs and Placeholders
  • Build the Graph
    • Inference
    • Loss
    • Training
  • Train the Model
    • The Graph
    • The Session
    • Train Loop
  • Evaluate the Model
    • Build the Eval Graph
    • Eval Output

Advanced Usage

  • Threading and Queues
  • Distributed TensorFlow
  • Writing Documentation and Sharing your Model
  • Customizing Data Readers
  • Using GPUs¹
  • Manipulating TensorFlow Model Files

TensorFlow Serving

  • Introduction
  • Basic Serving Tutorial
  • Advanced Serving Tutorial
  • Serving Inception Model Tutorial

¹ The Advanced Usage topic, “Using GPUs”, is not available as a part of a remote course. This module can be delivered during classroom-based courses, but only by prior agreement, and only if both the trainer and all participants have laptops with supported NVIDIA GPUs, with 64-bit Linux installed (not provided by NobleProg). NobleProg cannot guarantee the availability of trainers with the required hardware.

tfir TensorFlow for Image Recognition 28 hours

This course explores, with specific examples, the application of Tensor Flow to the purposes of image recognition

Audience

This course is intended for engineers seeking to utilize TensorFlow for the purposes of Image Recognition

After completing this course, delegates will be able to:

  • understand TensorFlow’s structure and deployment mechanisms
  • carry out installation / production environment / architecture tasks and configuration
  • assess code quality, perform debugging, monitoring
  • implement advanced production like training models, building graphs and logging

Machine Learning and Recursive Neural Networks (RNN) basics

  • NN and RNN
  • Backprogation
  • Long short-term memory (LSTM)

TensorFlow Basics

  • Creation, Initializing, Saving, and Restoring TensorFlow variables
  • Feeding, Reading and Preloading TensorFlow Data
  • How to use TensorFlow infrastructure to train models at scale
  • Visualizing and Evaluating models with TensorBoard

TensorFlow Mechanics 101

  • Tutorial Files
  • Prepare the Data
    • Download
    • Inputs and Placeholders
  • Build the Graph
    • Inference
    • Loss
    • Training
  • Train the Model
    • The Graph
    • The Session
    • Train Loop
  • Evaluate the Model
    • Build the Eval Graph
    • Eval Output

Advanced Usage

  • Threading and Queues
  • Distributed TensorFlow
  • Writing Documentation and Sharing your Model
  • Customizing Data Readers
  • Using GPUs¹
  • Manipulating TensorFlow Model Files

TensorFlow Serving

  • Introduction
  • Basic Serving Tutorial
  • Advanced Serving Tutorial
  • Serving Inception Model Tutorial

Convolutional Neural Networks

  • Overview
    • Goals
    • Highlights of the Tutorial
    • Model Architecture
  • Code Organization
  • CIFAR-10 Model
    • Model Inputs
    • Model Prediction
    • Model Training
  • Launching and Training the Model
  • Evaluating a Model
  • Training a Model Using Multiple GPU Cards¹
    • Placing Variables and Operations on Devices
    • Launching and Training the Model on Multiple GPU cards

Deep Learning for MNIST

  • Setup
  • Load MNIST Data
  • Start TensorFlow InteractiveSession
  • Build a Softmax Regression Model
  • Placeholders
  • Variables
  • Predicted Class and Cost Function
  • Train the Model
  • Evaluate the Model
  • Build a Multilayer Convolutional Network
  • Weight Initialization
  • Convolution and Pooling
  • First Convolutional Layer
  • Second Convolutional Layer
  • Densely Connected Layer
  • Readout Layer
  • Train and Evaluate the Model

Image Recognition

  • Inception-v3
    • C++
    • Java

¹ Topics related to the use of GPUs are not available as a part of a remote course. They can be delivered during classroom-based courses, but only by prior agreement, and only if both the trainer and all participants have laptops with supported NVIDIA GPUs, with 64-bit Linux installed (not provided by NobleProg). NobleProg cannot guarantee the availability of trainers with the required hardware.

dlv Deep Learning for Vision 21 hours

Audience

This course is suitable for Deep Learning researchers and engineers interested in utilizing available tools (mostly open source ) for analyzing computer images

This course provide working examples.

Deep Learning vs Machine Learning vs Other Methods

  • When Deep Learning is suitable
  • Limits of Deep Learning
  • Comparing accuracy and cost of different methods

Methods Overview

  • Nets and  Layers
  • Forward / Backward: the essential computations of layered compositional models.
  • Loss: the task to be learned is defined by the loss.
  • Solver: the solver coordinates model optimization.
  • Layer Catalogue: the layer is the fundamental unit of modeling and computation
  • Convolution​

Methods and models

  • Backprop, modular models
  • Logsum module
  • RBF Net
  • MAP/MLE loss
  • Parameter Space Transforms
  • Convolutional Module
  • Gradient-Based Learning 
  • Energy for inference,
  • Objective for learning
  • PCA; NLL: 
  • Latent Variable Models
  • Probabilistic LVM
  • Loss Function
  • Detection with Fast R-CNN
  • Sequences with LSTMs and Vision + Language with LRCN
  • Pixelwise prediction with FCNs
  • Framework design and future

Tools

  • Caffe
  • Tensorflow
  • R
  • Matlab
  • Others...
Neuralnettf Neural Networks Fundamentals using TensorFlow as Example 28 hours

This course will give you knowledge in neural networks and generally in machine learning algorithm,  deep learning (algorithms and applications).

This training is more focus on fundamentals, but will help you choosing the right technology : TensorFlow, Caffe, Teano, DeepDrive, Keras, etc. The examples are made in TensorFlow.

TensorFlow Basics

  • Creation, Initializing, Saving, and Restoring TensorFlow variables
  • Feeding, Reading and Preloading TensorFlow Data
  • How to use TensorFlow infrastructure to train models at scale
  • Visualizing and Evaluating models with TensorBoard

TensorFlow Mechanics

  • Inputs and Placeholders
  • Build the GraphS
    • Inference
    • Loss
    • Training
  • Train the Model
    • The Graph
    • The Session
    • Train Loop
  • Evaluate the Model
    • Build the Eval Graph
    • Eval Output

The Perceptron

  • Activation functions
  • The perceptron learning algorithm
  • Binary classification with the perceptron
  • Document classification with the perceptron
  • Limitations of the perceptron

From the Perceptron to Support Vector Machines

  • Kernels and the kernel trick
  • Maximum margin classification and support vectors

Artificial Neural Networks

  • Nonlinear decision boundaries
  • Feedforward and feedback artificial neural networks
  • Multilayer perceptrons
  • Minimizing the cost function
  • Forward propagation
  • Back propagation
  • Improving the way neural networks learn

Convolutional Neural Networks

  • Goals
  • Model Architecture
  • Principles
  • Code Organization
  • Launching and Training the Model
  • Evaluating a Model
datamodeling Pattern Recognition 35 hours

This course provides an introduction into the field of pattern recognition and machine learning. It also touches on practical applications in statistics, computer science, signal processing, computer vision, data mining, and bioinformatics. The course is interactive and includes plenty of hands-on exercises, continuous feedback, and testing of knowledge and skills acquired.

Audience
    Data analysts
    PhD students, researchers and practitioners

 

Introduction

Probability theory, model selection, decision and information theory

Probability distributions

Linear models for regression and classification

Neural networks

Kernel methods

Sparse kernel machines

Graphical models

Mixture models and EM

Approximate inference

Sampling methods

Continuous latent variables

Sequential data

Combining models

 

tsflw2v Natural Language Processing with TensorFlow 35 hours

TensorFlow™ is an open source software library for numerical computation using data flow graphs.

SyntaxNet is a neural-network Natural Language Processing framework for TensorFlow.

Word2Vec is used for learning vector representations of words, called "word embeddings". Word2vec is a particularly computationally-efficient predictive model for learning word embeddings from raw text. It comes in two flavors, the Continuous Bag-of-Words model (CBOW) and the Skip-Gram model (Chapter 3.1 and 3.2 in Mikolov et al.).

Used in tandem, SyntaxNet and Word2Vec allows users to generate Learned Embedding models from Natural Language input.

Audience

This course is targeted at Developers and engineers who intend to work with SyntaxNet and Word2Vec models in their TensorFlow graphs.

After completing this course, delegates will:

  • understand TensorFlow’s structure and deployment mechanisms
  • be able to carry out installation / production environment / architecture tasks and configuration
  • be able to assess code quality, perform debugging, monitoring
  • be able to implement advanced production like training models, embedding terms, building graphs and logging

Getting Started

  • Setup and Installation

TensorFlow Basics

  • Creation, Initializing, Saving, and Restoring TensorFlow variables
  • Feeding, Reading and Preloading TensorFlow Data
  • How to use TensorFlow infrastructure to train models at scale
  • Visualizing and Evaluating models with TensorBoard

TensorFlow Mechanics 101

  • Prepare the Data
    • Download
    • Inputs and Placeholders
  • Build the Graph
    • Inference
    • Loss
    • Training
  • Train the Model
    • The Graph
    • The Session
    • Train Loop
  • Evaluate the Model
    • Build the Eval Graph
    • Eval Output

Advanced Usage

  • Threading and Queues
  • Distributed TensorFlow
  • Writing Documentation and Sharing your Model
  • Customizing Data Readers
  • Using GPUs
  • Manipulating TensorFlow Model Files

TensorFlow Serving

  • Introduction
  • Basic Serving Tutorial
  • Advanced Serving Tutorial
  • Serving Inception Model Tutorial

Getting Started with SyntaxNet

  • Parsing from Standard Input
  • Annotating a Corpus
  • Configuring the Python Scripts

Building an NLP Pipeline with SyntaxNet

  • Obtaining Data
  • Part-of-Speech Tagging
  • Training the SyntaxNet POS Tagger
  • Preprocessing with the Tagger
  • Dependency Parsing: Transition-Based Parsing
  • Training a Parser Step 1: Local Pretraining
  • Training a Parser Step 2: Global Training

Vector Representations of Words

  • Motivation: Why Learn word embeddings?
  • Scaling up with Noise-Contrastive Training
  • The Skip-gram Model
  • Building the Graph
  • Training the Model
  • Visualizing the Learned Embeddings
  • Evaluating Embeddings: Analogical Reasoning
  • Optimizing the Implementation

 

 

Other regions

Szkolenie TensorFlow w Lublin, szkolenie wieczorowe TensorFlow w Lublin, szkolenie weekendowe TensorFlow w Lublin, TensorFlow boot camp w Lublin, kurs zdalny TensorFlow w Lublin , lekcje UML w Lublin, Trener TensorFlow w Lublin,Kurs TensorFlow w Lublin,Kursy TensorFlow w Lublin, instruktor TensorFlow w Lublin, wykładowca TensorFlow w Lublin , edukacja zdalna TensorFlow w Lublin, kurs online TensorFlow w Lublin, nauczanie wirtualne TensorFlow w Lublin

Kursy w promocyjnej cenie

Szkolenie Miejscowość Data Kursu Cena szkolenia [Zdalne / Stacjonarne]
6 kapeluszy myślowych wg Edwarda de Bono Gdańsk, ul. Powstańców Warszawskich 45 czw., 2017-05-25 09:00 5148PLN / 1726PLN
Facebook w marketingu i reklamie Poznań, Garbary 100/63 pt., 2017-05-26 09:00 1881PLN / 952PLN
Programowanie w języku Python Szczecin, ul. Sienna 9 pon., 2017-05-29 09:00 10000PLN / 4448PLN
Facebook w marketingu i reklamie Lublin, ul. Spadochroniarzy 9 pt., 2017-06-02 09:00 1881PLN / 1002PLN
MongoDB for Administrators Kraków, ul. Rzemieślnicza 1 wt., 2017-06-06 09:00 3861PLN / 2087PLN
Oracle 11g - Programowanie w PL/SQL I - warsztaty Wrocław, ul.Ludwika Rydygiera 2a/22 wt., 2017-06-06 09:00 5990PLN / 2939PLN
Adobe Photoshop Elements Gdynia, ul. Ejsmonda 2 śr., 2017-06-07 09:00 1881PLN / 1127PLN
Microsoft Office Excel - moduł Business Intelligence Gdynia, ul. Ejsmonda 2 śr., 2017-06-07 09:00 2673PLN / 1391PLN
Adobe Photoshop Elements Gdańsk, ul. Powstańców Warszawskich 45 śr., 2017-06-07 09:00 1881PLN / 1127PLN
Adobe InDesign Poznań, Garbary 100/63 czw., 2017-06-08 09:00 1881PLN / 1027PLN
Wzorce projektowe w C# Poznań, Garbary 100/63 czw., 2017-06-08 09:00 3861PLN / 1830PLN
SQL Fundamentals Gdańsk, ul. Powstańców Warszawskich 45 czw., 2017-06-08 09:00 3663PLN / 1610PLN
Techniki DTP (InDesign, Photoshop, Illustrator, Acrobat) Opole, Władysława Reymonta 29 pon., 2017-06-12 09:00 5940PLN / 4230PLN
Visual Basic for Applications (VBA) w Excel - poziom zaawansowany Warszawa, ul. Złota 3/11 pon., 2017-06-12 09:00 3069PLN / 1623PLN
Visual Basic for Applications (VBA) w Excel - wstęp do programowania Gdynia, ul. Ejsmonda 2 pon., 2017-06-12 09:00 3564PLN / 1891PLN
Spring i Hibernate w tworzeniu aplikacji w języku Java Poznań, Garbary 100/63 wt., 2017-06-13 09:00 7722PLN / 3358PLN
Drools Rules Administration Wrocław, ul.Ludwika Rydygiera 2a/22 śr., 2017-06-14 09:00 21196PLN / 7023PLN
Build applications with Oracle Application Express (APEX) Katowice ul. Opolska 22 pon., 2017-06-19 09:00 9801PLN / 4720PLN
Tworzenie i zarządzanie stronami WWW Poznań, Garbary 100/63 pon., 2017-06-19 09:00 5841PLN / 2298PLN
Front End Developer Rzeszów, Plac Wolności 13 pon., 2017-06-19 09:00 23000PLN / 7970PLN
Introduction to Selenium Warszawa, ul. Złota 3/11 czw., 2017-06-22 09:00 1871PLN / 824PLN
Javascript And Ajax Rzeszów, Plac Wolności 13 pon., 2017-06-26 09:00 5841PLN / 3655PLN
Wprowadzenie do programowania Gdańsk, ul. Powstańców Warszawskich 45 pon., 2017-06-26 09:00 5742PLN / 4121PLN
Implementation and Administration of Elasticsearch Wrocław, ul.Ludwika Rydygiera 2a/22 śr., 2017-06-28 09:00 20800PLN / 6903PLN
Efektywna komunikacja interpersonalna z elementami asertywności Wrocław, ul.Ludwika Rydygiera 2a/22 czw., 2017-06-29 09:00 5148PLN / 1430PLN
Elasticsearch Advanced Administration, Monitoring and Maintenance Gdańsk, ul. Powstańców Warszawskich 45 wt., 2017-07-04 09:00 17741PLN / 5876PLN
Nginx konfiguracja i Administracja Bydgoszcz, ul. Dworcowa 94 śr., 2017-07-05 09:00 6930PLN / 2850PLN
SQL Fundamentals Warszawa, ul. Złota 3/11 pon., 2017-07-10 09:00 3663PLN / 1510PLN
Protokół SIP w VoIP Poznań, Garbary 100/63 pon., 2017-07-17 09:00 15929PLN / 5427PLN
Visual Basic for Applications (VBA) w Excel - wprowadzenie Wrocław, ul.Ludwika Rydygiera 2a/22 śr., 2017-08-02 09:00 2376PLN / 1192PLN
Programowanie w WPF 4.5 Lublin, ul. Spadochroniarzy 9 śr., 2017-08-16 09:00 6435PLN / 2443PLN
Tworzenie i zarządzanie stronami WWW Poznań, Garbary 100/63 pon., 2017-09-25 09:00 5841PLN / 2298PLN

Newsletter z promocjami

Zapisz się na nasz newsletter i otrzymuj informacje o aktualnych zniżkach na kursy otwarte.
Szanujemy Twoją prywatność, dlatego Twój e-mail będzie wykorzystywany jedynie w celu wysyłki naszego newslettera, nie będzie udostępniony ani sprzedany osobom trzecim.
W dowolnej chwili możesz zmienić swoje preferencje co do otrzymywanego newslettera bądź całkowicie się z niego wypisać.

Zaufali nam