Edge AI in Industrial Automation - Plan Szkolenia
Edge AI in Industrial Automation koncentruje się na zastosowaniu Edge AI w środowisku produkcyjnym i przemysłowym. Kurs obejmuje konserwację predykcyjną, kontrolę jakości i optymalizację procesów przy użyciu technik AI, zapewniając praktyczną wiedzę na temat usprawniania operacji przemysłowych za pomocą Edge AI.
To prowadzone przez instruktora szkolenie na żywo (na miejscu lub zdalnie) jest przeznaczone dla inżynierów przemysłowych średniego szczebla, specjalistów ds. produkcji i programistów AI, którzy chcą wdrożyć rozwiązania Edge AI w automatyce przemysłowej.
Po zakończeniu tego szkolenia uczestnicy będą w stanie
- Zrozumieć rolę Edge AI w automatyce przemysłowej.
- Wdrożyć rozwiązania konserwacji predykcyjnej przy użyciu Edge AI.
- Zastosować techniki AI do kontroli jakości w procesach produkcyjnych.
- Optymalizować procesy przemysłowe przy użyciu Edge AI.
- Wdrażanie i zarządzanie rozwiązaniami Edge AI w środowiskach przemysłowych.
Format kursu
- Interaktywny wykład i dyskusja.
- Wiele ćwiczeń i praktyki.
- Praktyczne wdrożenie w środowisku laboratoryjnym na żywo.
Opcje dostosowywania kursu
- Aby poprosić o spersonalizowane szkolenie dla tego kursu, skontaktuj się z nami w celu ustalenia szczegółów.
Plan Szkolenia
Wprowadzenie do Edge AI w Industrial Automation
- Przegląd Edge AI i jej zastosowań w przemyśle
- Korzyści i wyzwania związane z wykorzystaniem Edge AI w środowisku przemysłowym
- Studia przypadków udanych zastosowań Edge AI w produkcji
Konfiguracja środowiska Edge AI
- Instalowanie i konfigurowanie narzędzi Edge AI
- Konfiguracja czujników przemysłowych i systemów gromadzenia danych
- Wprowadzenie do odpowiednich frameworków i bibliotek Edge AI
- Praktyczne ćwiczenia konfiguracji środowiska
Konserwacja predykcyjna z wykorzystaniem Edge AI
- Wprowadzenie do konserwacji predykcyjnej
- Opracowywanie modeli AI do monitorowania stanu urządzeń
- Wdrażanie wykrywania i przewidywania usterek w czasie rzeczywistym
- Praktyczne ćwiczenia z zakresu konserwacji predykcyjnej
Kontrola jakości z wykorzystaniem Edge AI
- Przegląd kontroli jakości w produkcji
- Techniki AI do wykrywania i klasyfikacji defektów
- Wdrażanie wizyjnych systemów kontroli jakości
- Praktyczne ćwiczenia dla aplikacji kontroli jakości
Optymalizacja procesów z wykorzystaniem Edge AI
- Wprowadzenie do optymalizacji procesów
- Wykorzystanie AI do monitorowania i kontroli procesów w czasie rzeczywistym
- Wdrażanie systemów decyzyjnych opartych na AI
- Praktyczne ćwiczenia dotyczące optymalizacji procesów
Wdrażanie i zarządzanie rozwiązaniami Edge AI
- Wdrażanie modeli AI na przemysłowych urządzeniach brzegowych
- Monitorowanie i konserwacja systemów Edge AI
- Rozwiązywanie problemów i optymalizacja wdrożonych modeli
- Praktyczne ćwiczenia dotyczące wdrażania i zarządzania
Narzędzia i ramy dla przemysłowej sztucznej inteligencji brzegowej
- Przegląd narzędzi i frameworków (np. TensorFlow Lite, OpenVINO)
- Korzystanie z TensorFlow Lite dla przemysłowych aplikacji AI
- Praktyczne ćwiczenia z narzędziami optymalizacyjnymi
Aplikacje i studia przypadków w świecie rzeczywistym
- Przegląd udanych przemysłowych projektów Edge AI
- Omówienie przypadków użycia specyficznych dla branży
- Praktyczny projekt budowy i optymalizacji rzeczywistej przemysłowej aplikacji AI
Podsumowanie i kolejne kroki
Wymagania
- Zrozumienie koncepcji sztucznej inteligencji i uczenia maszynowego
- Doświadczenie z systemami automatyki przemysłowej
- Podstawowe umiejętności programowania (Python zalecane)
Odbiorcy
- Inżynierowie przemysłowi
- Specjaliści ds. produkcji
- Programiści AI
Szkolenia otwarte są realizowane w przypadku uzbierania się grupy szkoleniowej liczącej co najmniej 5 osób na dany termin.
Edge AI in Industrial Automation - Plan Szkolenia - Booking
Edge AI in Industrial Automation - Plan Szkolenia - Enquiry
Edge AI in Industrial Automation - Zapytanie o Konsultacje
Zapytanie o Konsultacje
Propozycje terminów
Szkolenia Powiązane
Advanced Edge AI Techniques
14 godzinAdvanced Edge AI Techniques focuses on the in-depth exploration of sophisticated techniques for model optimization, deployment strategies, and specialized applications of Edge AI. This course is designed to provide experienced AI practitioners, researchers, and advanced developers with cutting-edge knowledge and hands-on skills to push the boundaries of what is possible with Edge AI.
This instructor-led, live training (online or onsite) is aimed at advanced-level AI practitioners, researchers, and developers who wish to master the latest advancements in Edge AI, optimize their AI models for edge deployment, and explore specialized applications across various industries.
By the end of this training, participants will be able to:
- Explore advanced techniques in Edge AI model development and optimization.
- Implement cutting-edge strategies for deploying AI models on edge devices.
- Utilize specialized tools and frameworks for advanced Edge AI applications.
- Optimize performance and efficiency of Edge AI solutions.
- Explore innovative use cases and emerging trends in Edge AI.
- Address advanced ethical and security considerations in Edge AI deployments.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Building AI Solutions on the Edge
14 godzinBuilding AI Solutions on the Edge focuses on the step-by-step creation and deployment of AI models on edge devices. This course includes practical projects and real-world applications, providing participants with hands-on experience in developing and implementing AI solutions directly on edge hardware.
This instructor-led, live training (online or onsite) is aimed at intermediate-level developers, data scientists, and tech enthusiasts who wish to gain practical skills in deploying AI models on edge devices for various applications.
By the end of this training, participants will be able to:
- Understand the principles of Edge AI and its benefits.
- Set up and configure the edge computing environment.
- Develop, train, and optimize AI models for edge deployment.
- Implement practical AI solutions on edge devices.
- Evaluate and improve the performance of edge-deployed models.
- Address ethical and security considerations in Edge AI applications.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Edge AI in Autonomous Systems
14 godzinEdge AI in Autonomous Systems focuses on the application of Edge AI technologies in autonomous vehicles, drones, and robotics. This course covers real-time processing, control systems, and practical deployment of AI solutions in autonomous systems. Participants will gain hands-on experience and advanced knowledge necessary to develop and implement Edge AI in various autonomous applications.
This instructor-led, live training (online or onsite) is aimed at intermediate-level robotics engineers, autonomous vehicle developers, and AI researchers who wish to leverage Edge AI for innovative autonomous system solutions.
By the end of this training, participants will be able to:
- Understand the role and benefits of Edge AI in autonomous systems.
- Develop and deploy AI models for real-time processing on edge devices.
- Implement Edge AI solutions in autonomous vehicles, drones, and robotics.
- Design and optimize control systems using Edge AI.
- Address ethical and regulatory considerations in autonomous AI applications.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Edge AI: From Concept to Implementation
14 godzinEdge AI is the deployment and operation of AI models directly on edge devices, such as smartphones, IoT devices, and sensors, enabling real-time data processing and decision-making.
This instructor-led, live training (online or onsite) is aimed at intermediate-level developers and IT professionals who wish to gain a comprehensive understanding of Edge AI from concept to practical implementation, including setup and deployment.
By the end of this training, participants will be able to:
- Understand the fundamental concepts of Edge AI.
- Set up and configure Edge AI environments.
- Develop, train, and optimize Edge AI models.
- Deploy and manage Edge AI applications.
- Integrate Edge AI with existing systems and workflows.
- Address ethical considerations and best practices in Edge AI implementation.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Edge AI for Financial Services
14 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla średniozaawansowanych specjalistów finansowych, programistów fintech i specjalistów AI, którzy chcą wdrożyć rozwiązania Edge AI w usługach finansowych.
Pod koniec tego szkolenia uczestnicy będą w stanie
- Zrozumieć rolę Edge AI w usługach finansowych.
- Wdrożyć systemy wykrywania oszustw przy użyciu Edge AI.
- Poprawić obsługę klienta dzięki rozwiązaniom opartym na sztucznej inteligencji.
- Zastosować Edge AI do zarządzania ryzykiem i podejmowania decyzji.
- Wdrażać i zarządzać rozwiązaniami Edge AI w środowiskach finansowych.
Edge AI for Healthcare
14 godzinEdge AI for Healthcare focuses on the application of Edge AI technologies in the healthcare sector. This course covers the development and deployment of AI solutions for wearable devices, diagnostic tools, and patient monitoring systems. Participants will gain hands-on experience and practical knowledge to enhance healthcare delivery and outcomes using Edge AI.
This instructor-led, live training (online or onsite) is aimed at intermediate-level healthcare professionals, biomedical engineers, and AI developers who wish to leverage Edge AI for innovative healthcare solutions.
By the end of this training, participants will be able to:
- Understand the role and benefits of Edge AI in healthcare.
- Develop and deploy AI models on edge devices for healthcare applications.
- Implement Edge AI solutions in wearable devices and diagnostic tools.
- Design and deploy patient monitoring systems using Edge AI.
- Address ethical and regulatory considerations in healthcare AI applications.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Edge AI for IoT Applications
14 godzinEdge AI for IoT Applications focuses on the integration of Edge AI with IoT systems, enabling real-time data processing and decision-making directly on IoT devices. This course covers the foundational concepts, tools, and techniques required to implement Edge AI in IoT environments.
This instructor-led, live training (online or onsite) is aimed at intermediate-level developers, system architects, and industry professionals who wish to leverage Edge AI for enhancing IoT applications with intelligent data processing and analytics capabilities.
By the end of this training, participants will be able to:
- Understand the fundamentals of Edge AI and its application in IoT.
- Set up and configure Edge AI environments for IoT devices.
- Develop and deploy AI models on edge devices for IoT applications.
- Implement real-time data processing and decision-making in IoT systems.
- Integrate Edge AI with various IoT protocols and platforms.
- Address ethical considerations and best practices in Edge AI for IoT.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Edge AI for Smart Cities
14 godzinEdge AI for Smart Cities focuses on the implementation of Edge AI technologies in smart city infrastructures, covering applications such as traffic management, surveillance, and resource optimization. This course provides practical knowledge and strategies to integrate Edge AI into urban environments, enhancing the efficiency and functionality of smart city projects.
This instructor-led, live training (online or onsite) is aimed at intermediate-level urban planners, civil engineers, and smart city project managers who wish to leverage Edge AI for smart city initiatives.
By the end of this training, participants will be able to:
- Understand the role of Edge AI in smart city infrastructures.
- Implement Edge AI solutions for traffic management and surveillance.
- Optimize urban resources using Edge AI technologies.
- Integrate Edge AI with existing smart city systems.
- Address ethical and regulatory considerations in smart city deployments.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Edge AI with TensorFlow Lite
14 godzinTensorFlow Lite is a lightweight version of TensorFlow designed for mobile and embedded devices. Edge AI with TensorFlow Lite focuses on utilizing TensorFlow Lite for developing and deploying Edge AI models. This course covers the tools and techniques specific to TensorFlow Lite, providing practical knowledge for building efficient AI models for edge devices.
This instructor-led, live training (online or onsite) is aimed at intermediate-level developers, data scientists, and AI practitioners who wish to leverage TensorFlow Lite for Edge AI applications.
By the end of this training, participants will be able to:
- Understand the fundamentals of TensorFlow Lite and its role in Edge AI.
- Develop and optimize AI models using TensorFlow Lite.
- Deploy TensorFlow Lite models on various edge devices.
- Utilize tools and techniques for model conversion and optimization.
- Implement practical Edge AI applications using TensorFlow Lite.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introduction to Edge AI
14 godzinEdge AI is the deployment and operation of AI models directly on edge devices, such as smartphones, IoT devices, and sensors, enabling real-time data processing and decision-making.
This instructor-led, live training (online or onsite) is aimed at beginner-level developers and IT professionals who wish to understand the fundamentals of Edge AI and its introductory applications.
By the end of this training, participants will be able to:
- Understand the basic concepts and architecture of Edge AI.
- Set up and configure Edge AI environments.
- Develop and deploy simple Edge AI applications.
- Identify and understand the use cases and benefits of Edge AI.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Optimizing AI Models for Edge Devices
14 godzinOptimizing AI Models for Edge Devices focuses on techniques for optimizing AI models to run efficiently on edge hardware. This course covers model compression, quantization, and other optimization techniques, providing practical knowledge for building performant AI models for edge devices.
This instructor-led, live training (online or onsite) is aimed at intermediate-level AI developers, machine learning engineers, and system architects who wish to optimize AI models for edge deployment.
By the end of this training, participants will be able to:
- Understand the challenges and requirements of deploying AI models on edge devices.
- Apply model compression techniques to reduce the size and complexity of AI models.
- Utilize quantization methods to enhance model efficiency on edge hardware.
- Implement pruning and other optimization techniques to improve model performance.
- Deploy optimized AI models on various edge devices.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Security and Privacy in Edge AI
14 godzinSecurity and Privacy in Edge AI focuses on addressing security and privacy concerns related to the deployment of AI models on edge devices. This course covers best practices for securing edge devices, mitigating potential risks, and addressing ethical considerations in the use of Edge AI. Participants will gain practical knowledge and skills necessary to enhance the security and privacy of Edge AI applications.
This instructor-led, live training (online or onsite) is aimed at intermediate-level cybersecurity professionals, system administrators, and AI ethics researchers who wish to secure and ethically deploy Edge AI solutions.
By the end of this training, participants will be able to:
- Understand the security and privacy challenges in Edge AI.
- Implement best practices for securing edge devices and data.
- Develop strategies to mitigate security risks in Edge AI deployments.
- Address ethical considerations and ensure compliance with regulations.
- Conduct security assessments and audits for Edge AI applications.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.