Edge AI: From Concept to Implementation - Plan Szkolenia
Edge AI is the deployment and operation of AI models directly on edge devices, such as smartphones, IoT devices, and sensors, enabling real-time data processing and decision-making.
This instructor-led, live training (online or onsite) is aimed at intermediate-level developers and IT professionals who wish to gain a comprehensive understanding of Edge AI from concept to practical implementation, including setup and deployment.
By the end of this training, participants will be able to:
- Understand the fundamental concepts of Edge AI.
- Set up and configure Edge AI environments.
- Develop, train, and optimize Edge AI models.
- Deploy and manage Edge AI applications.
- Integrate Edge AI with existing systems and workflows.
- Address ethical considerations and best practices in Edge AI implementation.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Plan Szkolenia
Introduction to Edge AI
- Definition and key concepts
- Differences between Edge AI and Cloud AI
- Benefits and challenges of Edge AI
- Overview of Edge AI applications
Edge AI Architecture
- Components of Edge AI systems
- Hardware and software requirements
- Data flow in Edge AI applications
- Integration with existing systems
Setting Up the Edge AI Environment
- Introduction to Edge AI platforms (Raspberry Pi, NVIDIA Jetson, etc.)
- Installing necessary software and libraries
- Configuring the development environment
- Initializing the Edge AI setup
Developing Edge AI Models
- Overview of machine learning and deep learning models for edge devices
- Training models specifically for edge deployment
- Techniques for optimizing models for edge devices
- Tools and frameworks for Edge AI development (TensorFlow Lite, OpenVINO, etc.)
Data Management and Preprocessing for Edge AI
- Data collection techniques for edge environments
- Data preprocessing and augmentation for edge devices
- Managing data pipelines on edge devices
- Ensuring data privacy and security in edge environments
Deploying Edge AI Applications
- Steps for deploying models on various edge devices
- Techniques for monitoring and managing deployed models
- Real-time data processing and inference on edge devices
- Case studies and practical examples of deployment
Integrating Edge AI with IoT Systems
- Connecting Edge AI solutions with IoT devices and sensors
- Communication protocols and data exchange methods
- Building an end-to-end Edge AI and IoT solution
- Practical examples and use cases
Use Cases and Applications
- Industry-specific applications of Edge AI
- In-depth case studies in healthcare, automotive, and smart homes
- Success stories and lessons learned
- Future trends and opportunities in Edge AI
Ethical Considerations and Best Practices
- Ensuring privacy and security in Edge AI deployments
- Addressing bias and fairness in Edge AI models
- Compliance with regulations and standards
- Best practices for responsible AI deployment
Hands-On Projects and Exercises
- Developing a complex Edge AI application
- Real-world projects and scenarios
- Collaborative group exercises
- Project presentations and feedback
Summary and Next Steps
Wymagania
- An understanding of basic AI and machine learning concepts
- Experience with programming languages (Python recommended)
- Familiarity with edge computing and IoT concepts
Audience
- Developers
- IT professionals
Szkolenia otwarte są realizowane w przypadku uzbierania się grupy szkoleniowej liczącej co najmniej 5 osób na dany termin.
Edge AI: From Concept to Implementation - Plan Szkolenia - Booking
Edge AI: From Concept to Implementation - Plan Szkolenia - Enquiry
Edge AI: From Concept to Implementation - Zapytanie o Konsultacje
Zapytanie o Konsultacje
Propozycje terminów
Szkolenia Powiązane
Advanced Edge AI Techniques
14 godzinThis instructor-led, live training in Polsce (online or onsite) is aimed at advanced-level AI practitioners, researchers, and developers who wish to master the latest advancements in Edge AI, optimize their AI models for edge deployment, and explore specialized applications across various industries.
By the end of this training, participants will be able to:
- Explore advanced techniques in Edge AI model development and optimization.
- Implement cutting-edge strategies for deploying AI models on edge devices.
- Utilize specialized tools and frameworks for advanced Edge AI applications.
- Optimize performance and efficiency of Edge AI solutions.
- Explore innovative use cases and emerging trends in Edge AI.
- Address advanced ethical and security considerations in Edge AI deployments.
Building AI Solutions on the Edge
14 godzinThis instructor-led, live training in Polsce (online or onsite) is aimed at intermediate-level developers, data scientists, and tech enthusiasts who wish to gain practical skills in deploying AI models on edge devices for various applications.
By the end of this training, participants will be able to:
- Understand the principles of Edge AI and its benefits.
- Set up and configure the edge computing environment.
- Develop, train, and optimize AI models for edge deployment.
- Implement practical AI solutions on edge devices.
- Evaluate and improve the performance of edge-deployed models.
- Address ethical and security considerations in Edge AI applications.
Edge AI in Autonomous Systems
14 godzinThis instructor-led, live training in Polsce (online or onsite) is aimed at intermediate-level robotics engineers, autonomous vehicle developers, and AI researchers who wish to leverage Edge AI for innovative autonomous system solutions.
By the end of this training, participants will be able to:
- Understand the role and benefits of Edge AI in autonomous systems.
- Develop and deploy AI models for real-time processing on edge devices.
- Implement Edge AI solutions in autonomous vehicles, drones, and robotics.
- Design and optimize control systems using Edge AI.
- Address ethical and regulatory considerations in autonomous AI applications.
Edge AI for Financial Services
14 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla średniozaawansowanych specjalistów finansowych, programistów fintech i specjalistów AI, którzy chcą wdrożyć rozwiązania Edge AI w usługach finansowych.
Pod koniec tego szkolenia uczestnicy będą w stanie
- Zrozumieć rolę Edge AI w usługach finansowych.
- Wdrożyć systemy wykrywania oszustw przy użyciu Edge AI.
- Poprawić obsługę klienta dzięki rozwiązaniom opartym na sztucznej inteligencji.
- Zastosować Edge AI do zarządzania ryzykiem i podejmowania decyzji.
- Wdrażać i zarządzać rozwiązaniami Edge AI w środowiskach finansowych.
Edge AI for Healthcare
14 godzinThis instructor-led, live training in Polsce (online or onsite) is aimed at intermediate-level healthcare professionals, biomedical engineers, and AI developers who wish to leverage Edge AI for innovative healthcare solutions.
By the end of this training, participants will be able to:
- Understand the role and benefits of Edge AI in healthcare.
- Develop and deploy AI models on edge devices for healthcare applications.
- Implement Edge AI solutions in wearable devices and diagnostic tools.
- Design and deploy patient monitoring systems using Edge AI.
- Address ethical and regulatory considerations in healthcare AI applications.
Edge AI in Industrial Automation
14 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla inżynierów przemysłowych średniego szczebla, specjalistów ds. produkcji i programistów AI, którzy chcą wdrożyć rozwiązania Edge AI w automatyce przemysłowej.
Pod koniec tego szkolenia uczestnicy będą mogli
- Zrozumieć rolę Edge AI w automatyce przemysłowej.
- Wdrożyć rozwiązania konserwacji predykcyjnej przy użyciu Edge AI.
- Zastosować techniki AI do kontroli jakości w procesach produkcyjnych.
- Optymalizować procesy przemysłowe przy użyciu Edge AI.
- Wdrażać i zarządzać rozwiązaniami Edge AI w środowiskach przemysłowych.
Edge AI for IoT Applications
14 godzinThis instructor-led, live training in Polsce (online or onsite) is aimed at intermediate-level developers, system architects, and industry professionals who wish to leverage Edge AI for enhancing IoT applications with intelligent data processing and analytics capabilities.
By the end of this training, participants will be able to:
- Understand the fundamentals of Edge AI and its application in IoT.
- Set up and configure Edge AI environments for IoT devices.
- Develop and deploy AI models on edge devices for IoT applications.
- Implement real-time data processing and decision-making in IoT systems.
- Integrate Edge AI with various IoT protocols and platforms.
- Address ethical considerations and best practices in Edge AI for IoT.
Deploying AI Models on Edge Devices with NVIDIA Jetson
21 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (online lub na miejscu) jest przeznaczone dla średnio zaawansowanych programistów AI, inżynierów wbudowanych i inżynierów robotyki, którzy chcą zoptymalizować i wdrożyć modele AI na platformach NVIDIA Jetson dla aplikacji brzegowych.
Po zakończeniu tego szkolenia uczestnicy będą w stanie
- Zrozumieć podstawy edge AI i sprzętu NVIDIA Jetson.
- Zoptymalizować modele AI do wdrożenia na urządzeniach brzegowych.
- Używać TensorRT do akceleracji wnioskowania głębokiego uczenia.
- Wdrażać modele AI przy użyciu JetPack SDK i ONNX Runtime.
Edge AI and Robotics: Enabling Autonomous Systems
21 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla średnio zaawansowanych i zaawansowanych inżynierów robotyki, programistów AI i specjalistów automatyki, którzy chcą wdrożyć Edge AI do zastosowań w robotyce.
Pod koniec tego szkolenia uczestnicy będą w stanie
- Zrozumieć rolę Edge AI w systemach autonomicznych.
- Wdrażać modele AI na urządzeniach brzegowych dla robotyki w czasie rzeczywistym.
- Zoptymalizować wydajność sztucznej inteligencji pod kątem podejmowania decyzji z niskim opóźnieniem.
- Zintegrować wizję komputerową i fuzję czujników dla autonomii robotów.
Edge AI for Smart Cities
14 godzinThis instructor-led, live training in Polsce (online or onsite) is aimed at intermediate-level urban planners, civil engineers, and smart city project managers who wish to leverage Edge AI for smart city initiatives.
By the end of this training, participants will be able to:
- Understand the role of Edge AI in smart city infrastructures.
- Implement Edge AI solutions for traffic management and surveillance.
- Optimize urban resources using Edge AI technologies.
- Integrate Edge AI with existing smart city systems.
- Address ethical and regulatory considerations in smart city deployments.
Edge AI with TensorFlow Lite
14 godzinThis instructor-led, live training in Polsce (online or onsite) is aimed at intermediate-level developers, data scientists, and AI practitioners who wish to leverage TensorFlow Lite for Edge AI applications.
By the end of this training, participants will be able to:
- Understand the fundamentals of TensorFlow Lite and its role in Edge AI.
- Develop and optimize AI models using TensorFlow Lite.
- Deploy TensorFlow Lite models on various edge devices.
- Utilize tools and techniques for model conversion and optimization.
- Implement practical Edge AI applications using TensorFlow Lite.
Introduction to Edge AI
14 godzinThis instructor-led, live training in Polsce (online or onsite) is aimed at beginner-level developers and IT professionals who wish to understand the fundamentals of Edge AI and its introductory applications.
By the end of this training, participants will be able to:
- Understand the basic concepts and architecture of Edge AI.
- Set up and configure Edge AI environments.
- Develop and deploy simple Edge AI applications.
- Identify and understand the use cases and benefits of Edge AI.
Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
21 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla zaawansowanych inżynierów AI, programistów wbudowanych i inżynierów sprzętu, którzy chcą wdrożyć modele AI na urządzeniach o niskim poborze mocy przy jednoczesnym zminimalizowaniu zużycia energii.
Pod koniec tego szkolenia uczestnicy będą mogli
- Zrozumieć wyzwania związane z uruchamianiem sztucznej inteligencji na energooszczędnych urządzeniach.
- Zoptymalizować sieci neuronowe pod kątem wnioskowania o niskim poborze mocy.
- Wykorzystywać techniki kwantyzacji, przycinania i kompresji modeli.
- Wdrażać modele AI na urządzeniach brzegowych przy minimalnym zużyciu energii.
Optimizing AI Models for Edge Devices
14 godzinThis instructor-led, live training in Polsce (online or onsite) is aimed at intermediate-level AI developers, machine learning engineers, and system architects who wish to optimize AI models for edge deployment.
By the end of this training, participants will be able to:
- Understand the challenges and requirements of deploying AI models on edge devices.
- Apply model compression techniques to reduce the size and complexity of AI models.
- Utilize quantization methods to enhance model efficiency on edge hardware.
- Implement pruning and other optimization techniques to improve model performance.
- Deploy optimized AI models on various edge devices.
Security and Privacy in Edge AI
14 godzinThis instructor-led, live training in Polsce (online or onsite) is aimed at intermediate-level cybersecurity professionals, system administrators, and AI ethics researchers who wish to secure and ethically deploy Edge AI solutions.
By the end of this training, participants will be able to:
- Understand the security and privacy challenges in Edge AI.
- Implement best practices for securing edge devices and data.
- Develop strategies to mitigate security risks in Edge AI deployments.
- Address ethical considerations and ensure compliance with regulations.
- Conduct security assessments and audits for Edge AI applications.