Thank you for sending your enquiry! One of our team members will contact you shortly.
Thank you for sending your booking! One of our team members will contact you shortly.
Plan Szkolenia
Introduction to Predictive Maintenance
- What is predictive maintenance?
- Reactive vs. preventive vs. predictive approaches
- Real-world ROI and industry case studies
Data Collection and Preparation
- Sensors, IoT, and data logging in industrial environments
- Data cleaning and structuring for analysis
- Time series data and failure labeling
Machine Learning for Predictive Maintenance
- Overview of machine learning models (regression, classification, anomaly detection)
- Choosing the right model for equipment failure prediction
- Model training, validation, and performance metrics
Building the Predictive Workflow
- End-to-end pipeline: data ingestion, analysis, and alerts
- Using cloud platforms or edge computing for real-time analysis
- Integration with existing CMMS or ERP systems
Failure Mode and Health Index Modeling
- Predicting specific failure modes
- Calculating Remaining Useful Life (RUL)
- Developing asset health dashboards
Visualization and Alerting Systems
- Visualizing predictions and trends
- Setting thresholds and creating alerts
- Designing actionable insights for operators
Best Practices and Risk Management
- Overcoming data quality issues
- Ethics and explainability in industrial AI systems
- Change management and adoption across teams
Summary and Next Steps
Wymagania
- Understanding of industrial equipment and maintenance workflows
- Basic familiarity with AI and machine learning concepts
- Experience with data collection and monitoring systems
Audience
- Maintenance engineers
- Reliability teams
- Operations managers
14 godzin