Introduction to Transfer Learning - Plan Szkolenia
Transfer learning to technika uczenia maszynowego, w której model opracowany dla konkretnego zadania jest ponownie wykorzystywany jako punkt wyjścia dla modelu w drugim zadaniu. Ten kurs stanowi wprowadzenie do podstawowych pojęć, metodologii i zastosowań uczenia transferowego, umożliwiając uczestnikom skuteczne dostosowanie wstępnie wyszkolonych modeli do ich unikalnych zadań.
To prowadzone przez instruktora szkolenie na żywo (na miejscu lub zdalnie) jest przeznaczone dla początkujących i średnio zaawansowanych specjalistów od uczenia maszynowego, którzy chcą zrozumieć i zastosować techniki uczenia transferowego w celu poprawy wydajności i wydajności w projektach AI.
Pod koniec tego szkolenia uczestnicy będą mogli
- Zrozumieć podstawowe pojęcia i korzyści płynące z uczenia transferowego.
- Poznaj popularne wstępnie wytrenowane modele i ich zastosowania.
- Dostrajać wstępnie wytrenowane modele do niestandardowych zadań.
- Zastosować uczenie transferowe do rozwiązywania rzeczywistych problemów w NLP i wizji komputerowej.
Format kursu
- Interaktywny wykład i dyskusja.
- Wiele ćwiczeń i praktyki.
- Praktyczna implementacja w środowisku live-lab.
Opcje dostosowania kursu
- Aby poprosić o spersonalizowane szkolenie dla tego kursu, skontaktuj się z nami w celu ustalenia szczegółów.
Plan Szkolenia
Introduction to Transfer Learning
- Czym jest transfer learning?
- Kluczowe korzyści i ograniczenia
- Czym transfer learning różni się od tradycyjnego uczenia maszynowego
Zrozumienie wstępnie wytrenowanych modeli
- Przegląd popularnych wstępnie wytrenowanych modeli (np. ResNet, BERT)
- Architektury modeli i ich kluczowe cechy
- Zastosowania wstępnie wytrenowanych modeli w różnych dziedzinach
Dostrajanie wstępnie wytrenowanych modeli
- Zrozumienie ekstrakcji cech a dostrajanie
- Techniki skutecznego dostrajania
- Unikanie nadmiernego dopasowania podczas dostrajania
Transfer Learning w Natural Language Processing (NLP)
- Dostosowywanie modeli językowych do niestandardowych zadań NLP
- Korzystanie z Hugging Face Transformers dla NLP
- Studium przypadku: Analiza nastrojów z uczeniem transferowym
Transfer Learning w Computer Vision
- Adaptacja wstępnie wytrenowanych modeli wizyjnych
- Wykorzystanie uczenia transferowego do wykrywania i klasyfikacji obiektów
- Studium przypadku: Klasyfikacja obrazów z wykorzystaniem uczenia transferowego
Ćwiczenia praktyczne
- Ładowanie i używanie wstępnie wytrenowanych modeli
- Dostrajanie wstępnie wytrenowanego modelu do określonego zadania
- Ocena wydajności modelu i poprawa wyników
Rzeczywiste zastosowania uczenia transferowego
- Zastosowania w opiece zdrowotnej, finansach i handlu detalicznym
- Historie sukcesu i studia przypadków
- Przyszłe trendy i wyzwania w uczeniu transferowym
Podsumowanie i kolejne kroki
Wymagania
- Podstawowe zrozumienie koncepcji uczenia maszynowego
- Znajomość sieci neuronowych i uczenia głębokiego
- Doświadczenie z programowaniem Python
Uczestnicy
- Naukowcy zajmujący się danymi
- Entuzjaści uczenia maszynowego
- Specjaliści AI badający techniki adaptacji modeli
Szkolenia otwarte są realizowane w przypadku uzbierania się grupy szkoleniowej liczącej co najmniej 5 osób na dany termin.
Introduction to Transfer Learning - Plan Szkolenia - Booking
Introduction to Transfer Learning - Plan Szkolenia - Enquiry
Introduction to Transfer Learning - Zapytanie o Konsultacje
Zapytanie o Konsultacje
Propozycje terminów
Szkolenia Powiązane
Advanced Techniques in Transfer Learning
14 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla zaawansowanych specjalistów od uczenia maszynowego, którzy chcą opanować najnowocześniejsze techniki uczenia transferowego i zastosować je do złożonych problemów w świecie rzeczywistym.
Po zakończeniu tego szkolenia uczestnicy będą w stanie
- Zrozumieć zaawansowane koncepcje i metodologie w uczeniu transferowym.
- Wdrożyć techniki adaptacji specyficzne dla domeny dla wstępnie wytrenowanych modeli.
- Zastosować ciągłe uczenie się do zarządzania ewoluującymi zadaniami i zestawami danych.
- Opanować wielozadaniowe dostrajanie w celu zwiększenia wydajności modelu w różnych zadaniach.
Deploying Fine-Tuned Models in Production
21 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla zaawansowanych profesjonalistów, którzy chcą niezawodnie i wydajnie wdrażać precyzyjnie dostrojone modele.
Pod koniec tego szkolenia uczestnicy będą mogli
- Zrozumieć wyzwania związane z wdrażaniem precyzyjnie dostrojonych modeli do produkcji.
- Konteneryzować i wdrażać modele przy użyciu narzędzi takich jak Docker i Kubernetes.
- Wdrożyć monitorowanie i rejestrowanie wdrożonych modeli.
- Optymalizować modele pod kątem opóźnień i skalowalności w rzeczywistych scenariuszach.
Domain-Specific Fine-Tuning for Finance
21 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla średniozaawansowanych profesjonalistów, którzy chcą zdobyć praktyczne umiejętności dostosowywania modeli AI do krytycznych zadań finansowych.
Pod koniec tego szkolenia uczestnicy będą mogli
- Zrozumieć podstawy dostrajania dla aplikacji finansowych.
- Wykorzystać wstępnie wytrenowane modele do zadań specyficznych dla domeny w finansach.
- Stosować techniki wykrywania oszustw, oceny ryzyka i generowania porad finansowych.
- Zapewnienie zgodności z przepisami finansowymi, takimi jak GDPR i SOX.
- Wdrożenie bezpieczeństwa danych i etycznych praktyk AI w aplikacjach finansowych.
Fine-Tuning Models and Large Language Models (LLMs)
14 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla średnio zaawansowanych i zaawansowanych profesjonalistów, którzy chcą dostosować wstępnie wytrenowane modele do określonych zadań i zestawów danych.
Pod koniec tego szkolenia uczestnicy będą mogli
- Zrozumieć zasady dostrajania i jego zastosowania.
- Przygotować zestawy danych do dostrajania wstępnie wytrenowanych modeli.
- Dostroić duże modele językowe (LLM) do zadań NLP.
- Optymalizować wydajność modeli i radzić sobie z typowymi wyzwaniami.
Efficient Fine-Tuning with Low-Rank Adaptation (LoRA)
14 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla średnio zaawansowanych programistów i praktyków AI, którzy chcą wdrożyć strategie dostrajania dużych modeli bez potrzeby korzystania z rozległych zasobów obliczeniowych.
Pod koniec tego szkolenia uczestnicy będą w stanie
- Zrozumieć zasady Low-Rank Adaptation (LoRA).
- Wdrożyć LoRA w celu wydajnego dostrajania dużych modeli.
- Zoptymalizować dostrajanie dla środowisk o ograniczonych zasobach.
- Ocenić i wdrożyć modele dostrojone LoRA do praktycznych zastosowań.
Fine-Tuning Multimodal Models
28 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla zaawansowanych profesjonalistów, którzy chcą opanować multimodalne dostrajanie modeli dla innowacyjnych rozwiązań AI.
Pod koniec tego szkolenia uczestnicy będą mogli
- Zrozumieć architekturę modeli multimodalnych, takich jak CLIP i Flamingo.
- Skutecznie przygotowywać i wstępnie przetwarzać multimodalne zestawy danych.
- Dostroić modele multimodalne do konkretnych zadań.
- Optymalizować modele pod kątem rzeczywistych zastosowań i wydajności.
Fine-Tuning for Natural Language Processing (NLP)
21 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla średnio zaawansowanych profesjonalistów, którzy chcą ulepszyć swoje projekty NLP poprzez skuteczne dostrojenie wstępnie wytrenowanych modeli językowych.
Pod koniec tego szkolenia uczestnicy będą w stanie
- Zrozumieć podstawy dostrajania dla zadań NLP.
- Dostroić wstępnie wytrenowane modele, takie jak GPT, BERT i T5, do konkretnych zastosowań NLP.
- Optymalizacja hiperparametrów w celu poprawy wydajności modelu.
- Ocena i wdrażanie dostrojonych modeli w rzeczywistych scenariuszach.
Fine-Tuning DeepSeek LLM for Custom AI Models
21 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla zaawansowanych badaczy sztucznej inteligencji, inżynierów uczenia maszynowego i programistów, którzy chcą dostroić DeepSeek modele LLM do tworzenia wyspecjalizowanych aplikacji AI dostosowanych do konkretnych branż, dziedzin lub potrzeb biznesowych.
Pod koniec tego szkolenia uczestnicy będą w stanie
- Zrozumieć architekturę i możliwości modeli DeepSeek, w tym DeepSeek-R1 i DeepSeek-V3.
- Przygotować zestawy danych i wstępnie przetworzyć dane do dostrojenia.
- Dostrajanie DeepSeek LLM do zastosowań specyficznych dla danej domeny.
- Efektywna optymalizacja i wdrażanie dostrojonych modeli.
Fine-Tuning Large Language Models Using QLoRA
14 godzinTo szkolenie prowadzone przez instruktora, dostępne online lub na miejscu w Polsce, jest skierowane do inżynierów uczenia maszynowego, deweloperów AI oraz naukowców danych na poziomie średnim do zaawansowanym, którzy chcą nauczyć się używania QLoRA do efektywnego dopasowywania dużych modeli do określonych zadań i dostosowań.
Po ukończeniu tego szkolenia uczestnicy będą w stanie:
- Zrozumieć teorię stojącą za QLoRA i technikami kwantyzacji dla modeli językowych (LLMs).
- Wdrożyć QLoRA w procesie dopasowywania dużych modeli językowych do zastosowań specjalistycznych.
- Optymalizować wydajność dopasowywania przy ograniczonych zasobach obliczeniowych za pomocą kwantyzacji.
- Efektywnie wdrażać i oceniać dopasowane modele w rzeczywistych zastosowaniach.
Fine-Tuning Open-Source LLMs (LLaMA, Mistral, Qwen, etc.)
14 godzinTo szkolenie prowadzone przez instruktora, dostępne online lub na miejscu w Polsce, jest skierowane do praktyków ML i developerów AI na poziomie średnim, którzy chcą dostosowywać i wdrażać modele o otwartych wagach, takie jak LLaMA, Mistral i Qwen dla konkretnych zastosowań biznesowych lub wewnętrznych.
Po zakończeniu tego szkolenia uczestnicy będą w stanie:
- Zrozumieć ekosystem i różnice między otwartymi źródłami modeli LLM.
- Przygotować zestawy danych i konfiguracje do dostosowywania dla modeli, takich jak LLaMA, Mistral i Qwen.
- Wykonujeć procesy dostosowywania za pomocą Hugging Face Transformers i PEFT.
- Ocenić, zapisać i wdrożyć dostosowane modele w bezpiecznych środowiskach.
Fine-Tuning with Reinforcement Learning from Human Feedback (RLHF)
14 godzinTo szkolenie prowadzone przez instruktora w trybie Polsce (online lub stacjonarnym) jest przeznaczone dla zaawansowanych inżynierów uczenia maszynowego i badaczy sztucznej inteligencji, którzy chcą zastosować RLHF do doszlifowania dużych modeli AI w celu uzyskania lepszej wydajności, bezpieczeństwa i zgodności.
Po zakończeniu tego szkolenia uczestnicy będą w stanie:
- Zrozumieć teoretyczne podstawy RLHF i dlaczego jest ono kluczowe w współczesnym rozwoju sztucznej inteligencji.
- Wdrożyć modele nagród opartych na opinii człowieka, aby kierować procesami uczenia wzmocnionego.
- Doszkolić duże modele językowe za pomocą technik RLHF, aby dostosować wyniki do preferencji człowieka.
- Zastosować najlepsze praktyki w zakresie skalowania procesów RLHF dla systemów sztucznej inteligencji przeznaczonych do produkcji.
Optimizing Large Models for Cost-Effective Fine-Tuning
21 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla zaawansowanych profesjonalistów, którzy chcą opanować techniki optymalizacji dużych modeli pod kątem opłacalnego dostrajania w rzeczywistych scenariuszach.
Po zakończeniu tego szkolenia uczestnicy będą w stanie
- Zrozumieć wyzwania związane z dostrajaniem dużych modeli.
- Zastosować rozproszone techniki szkoleniowe do dużych modeli.
- Wykorzystać kwantyzację modelu i przycinanie w celu zwiększenia wydajności.
- Optymalizować wykorzystanie sprzętu do zadań dostrajania.
- Skutecznie wdrażać dostrojone modele w środowiskach produkcyjnych.
Prompt Engineering and Few-Shot Fine-Tuning
14 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla średniozaawansowanych profesjonalistów, którzy chcą wykorzystać moc szybkiej inżynierii i uczenia się kilku ujęć, aby zoptymalizować wydajność LLM w rzeczywistych zastosowaniach.
Po zakończeniu tego szkolenia uczestnicy będą w stanie
- Zrozumieć zasady inżynierii podpowiedzi i uczenia się kilku strzałów.
- Projektować skuteczne podpowiedzi dla różnych zadań NLP.
- Wykorzystywać techniki "few-shot" do adaptacji LLM przy minimalnej ilości danych.
- Optymalizować wydajność LLM pod kątem praktycznych zastosowań.
Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs
14 godzinTo szkolenie prowadzone przez instruktora w formie Polsce (online lub na miejscu) jest przeznaczone dla data scientistów i inżynierów AI na poziomie średnim, którzy chcą doskonalić duże modele językowe w sposób bardziej ekonomiczny i efektywny, wykorzystując metody takie jak LoRA, Adapter Tuning i Prefix Tuning.
Po zakończeniu tego szkolenia uczestnicy będą w stanie:
- Zrozumieć teorię za podejściami do efektywnego parametru fine-tuning.
- Wdrożyć LoRA, Adapter Tuning i Prefix Tuning za pomocą Hugging Face PEFT.
- Porównać wydajność i koszty związane z metodami PEFT w porównaniu do pełnego fine-tuning.
- Wdrożyć i skalować doskonalone modele językowe z mniejszymi wymaganiami obliczeniowymi i miejsca na dysku.
Troubleshooting Fine-Tuning Challenges
14 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla zaawansowanych profesjonalistów, którzy chcą udoskonalić swoje umiejętności w diagnozowaniu i rozwiązywaniu wyzwań związanych z dostrajaniem modeli uczenia maszynowego.
Pod koniec tego szkolenia uczestnicy będą w stanie
- Diagnozować kwestie takie jak nadmierne dopasowanie, niedopasowanie i brak równowagi danych.
- Wdrożyć strategie w celu poprawy konwergencji modelu.
- Optymalizować potoki dostrajania w celu uzyskania lepszej wydajności.
- Debugować procesy szkoleniowe przy użyciu praktycznych narzędzi i technik.