Fine-Tuning Multimodal Models - Plan Szkolenia
Fine-Tuning Multimodal Models koncentruje się na zaawansowanych technikach dostosowywania modeli przetwarzających wiele typów danych, takich jak tekst, obrazy i filmy. Uczestnicy uzyskają wgląd w obsługę złożonych zestawów danych, optymalizację wydajności modelu i wdrażanie tych modeli do rzeczywistych zastosowań, takich jak wizualne odpowiadanie na pytania i generowanie treści.
To prowadzone przez instruktora szkolenie na żywo (na miejscu lub zdalnie) jest przeznaczone dla zaawansowanych profesjonalistów, którzy chcą opanować multimodalne dostrajanie modeli dla innowacyjnych rozwiązań AI.
Pod koniec tego szkolenia uczestnicy będą mogli
- Zrozumieć architekturę modeli multimodalnych, takich jak CLIP i Flamingo.
- Skutecznie przygotowywać i wstępnie przetwarzać multimodalne zestawy danych.
- Dostroić modele multimodalne do konkretnych zadań.
- Optymalizować modele pod kątem rzeczywistych zastosowań i wydajności.
Format kursu
- Interaktywny wykład i dyskusja.
- Wiele ćwiczeń i praktyki.
- Praktyczne wdrożenie w środowisku laboratoryjnym na żywo.
Opcje dostosowania kursu
- Aby poprosić o spersonalizowane szkolenie dla tego kursu, skontaktuj się z nami w celu ustalenia szczegółów.
Plan Szkolenia
Wprowadzenie do modeli multimodalnych
- Przegląd multimodalnego uczenia maszynowego
- Zastosowania modeli multimodalnych
- Wyzwania związane z obsługą wielu typów danych
Architektury dla modeli multimodalnych
- Badanie modeli takich jak CLIP, Flamingo i BLIP
- Zrozumienie intermodalnych mechanizmów uwagi
- Rozważania architektoniczne dotyczące skalowalności i wydajności
Przygotowanie multimodalnych zestawów danych
- Gromadzenie danych i techniki adnotacji
- Wstępne przetwarzanie tekstu, obrazów i materiałów wideo
- Równoważenie zestawów danych dla zadań multimodalnych
Techniki dostrajania dla modeli multimodalnych
- Konfigurowanie potoków szkoleniowych dla modeli multimodalnych
- Zarządzanie pamięcią i ograniczeniami obliczeniowymi
- Obsługa wyrównania między modalnościami
Zastosowania dostrojonych modeli multimodalnych
- Odpowiadanie na pytania wizualne
- Napisy do obrazów i filmów
- Generowanie treści przy użyciu multimodalnych danych wejściowych
Optymalizacja i ocena wydajności
- Metryki oceny dla zadań multimodalnych
- Optymalizacja opóźnień i przepustowości na potrzeby produkcji
- Zapewnienie solidności i spójności różnych modalności
Wdrażanie modeli multimodalnych
- Pakowanie modeli do wdrożenia
- Wnioskowanie Scalable na platformach chmurowych
- Aplikacje i integracje w czasie rzeczywistym
Studia przypadków i praktyczne laboratoria
- Dostrajanie CLIP do wyszukiwania obrazów na podstawie treści
- Szkolenie multimodalnego chatbota z wykorzystaniem tekstu i wideo
- Wdrażanie intermodalnych systemów wyszukiwania
Podsumowanie i kolejne kroki
Wymagania
- Biegłość w programowaniu Python
- Zrozumienie koncepcji głębokiego uczenia
- Doświadczenie w dostrajaniu wstępnie wytrenowanych modeli
Uczestnicy
- Badacze sztucznej inteligencji
- Naukowcy zajmujący się danymi
- Praktycy uczenia maszynowego
Szkolenia otwarte są realizowane w przypadku uzbierania się grupy szkoleniowej liczącej co najmniej 5 osób na dany termin.
Fine-Tuning Multimodal Models - Plan Szkolenia - Booking
Fine-Tuning Multimodal Models - Plan Szkolenia - Enquiry
Fine-Tuning Multimodal Models - Zapytanie o Konsultacje
Zapytanie o Konsultacje
Propozycje terminów
Szkolenia Powiązane
Advanced Techniques in Transfer Learning
14 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla zaawansowanych specjalistów od uczenia maszynowego, którzy chcą opanować najnowocześniejsze techniki uczenia transferowego i zastosować je do złożonych problemów w świecie rzeczywistym.
Po zakończeniu tego szkolenia uczestnicy będą w stanie
- Zrozumieć zaawansowane koncepcje i metodologie w uczeniu transferowym.
- Wdrożyć techniki adaptacji specyficzne dla domeny dla wstępnie wytrenowanych modeli.
- Zastosować ciągłe uczenie się do zarządzania ewoluującymi zadaniami i zestawami danych.
- Opanować wielozadaniowe dostrajanie w celu zwiększenia wydajności modelu w różnych zadaniach.
Deploying Fine-Tuned Models in Production
21 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla zaawansowanych profesjonalistów, którzy chcą niezawodnie i wydajnie wdrażać precyzyjnie dostrojone modele.
Pod koniec tego szkolenia uczestnicy będą mogli
- Zrozumieć wyzwania związane z wdrażaniem precyzyjnie dostrojonych modeli do produkcji.
- Konteneryzować i wdrażać modele przy użyciu narzędzi takich jak Docker i Kubernetes.
- Wdrożyć monitorowanie i rejestrowanie wdrożonych modeli.
- Optymalizować modele pod kątem opóźnień i skalowalności w rzeczywistych scenariuszach.
Domain-Specific Fine-Tuning for Finance
21 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla średniozaawansowanych profesjonalistów, którzy chcą zdobyć praktyczne umiejętności dostosowywania modeli AI do krytycznych zadań finansowych.
Pod koniec tego szkolenia uczestnicy będą mogli
- Zrozumieć podstawy dostrajania dla aplikacji finansowych.
- Wykorzystać wstępnie wytrenowane modele do zadań specyficznych dla domeny w finansach.
- Stosować techniki wykrywania oszustw, oceny ryzyka i generowania porad finansowych.
- Zapewnienie zgodności z przepisami finansowymi, takimi jak GDPR i SOX.
- Wdrożenie bezpieczeństwa danych i etycznych praktyk AI w aplikacjach finansowych.
Fine-Tuning Models and Large Language Models (LLMs)
14 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla średnio zaawansowanych i zaawansowanych profesjonalistów, którzy chcą dostosować wstępnie wytrenowane modele do określonych zadań i zestawów danych.
Pod koniec tego szkolenia uczestnicy będą mogli
- Zrozumieć zasady dostrajania i jego zastosowania.
- Przygotować zestawy danych do dostrajania wstępnie wytrenowanych modeli.
- Dostroić duże modele językowe (LLM) do zadań NLP.
- Optymalizować wydajność modeli i radzić sobie z typowymi wyzwaniami.
Efficient Fine-Tuning with Low-Rank Adaptation (LoRA)
14 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla średnio zaawansowanych programistów i praktyków AI, którzy chcą wdrożyć strategie dostrajania dużych modeli bez potrzeby korzystania z rozległych zasobów obliczeniowych.
Pod koniec tego szkolenia uczestnicy będą w stanie
- Zrozumieć zasady Low-Rank Adaptation (LoRA).
- Wdrożyć LoRA w celu wydajnego dostrajania dużych modeli.
- Zoptymalizować dostrajanie dla środowisk o ograniczonych zasobach.
- Ocenić i wdrożyć modele dostrojone LoRA do praktycznych zastosowań.
Fine-Tuning for Natural Language Processing (NLP)
21 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla średnio zaawansowanych profesjonalistów, którzy chcą ulepszyć swoje projekty NLP poprzez skuteczne dostrojenie wstępnie wytrenowanych modeli językowych.
Pod koniec tego szkolenia uczestnicy będą w stanie
- Zrozumieć podstawy dostrajania dla zadań NLP.
- Dostroić wstępnie wytrenowane modele, takie jak GPT, BERT i T5, do konkretnych zastosowań NLP.
- Optymalizacja hiperparametrów w celu poprawy wydajności modelu.
- Ocena i wdrażanie dostrojonych modeli w rzeczywistych scenariuszach.
Fine-Tuning DeepSeek LLM for Custom AI Models
21 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla zaawansowanych badaczy sztucznej inteligencji, inżynierów uczenia maszynowego i programistów, którzy chcą dostroić DeepSeek modele LLM do tworzenia wyspecjalizowanych aplikacji AI dostosowanych do konkretnych branż, dziedzin lub potrzeb biznesowych.
Pod koniec tego szkolenia uczestnicy będą w stanie
- Zrozumieć architekturę i możliwości modeli DeepSeek, w tym DeepSeek-R1 i DeepSeek-V3.
- Przygotować zestawy danych i wstępnie przetworzyć dane do dostrojenia.
- Dostrajanie DeepSeek LLM do zastosowań specyficznych dla danej domeny.
- Efektywna optymalizacja i wdrażanie dostrojonych modeli.
Fine-Tuning Large Language Models Using QLoRA
14 godzinTo szkolenie prowadzone przez instruktora, dostępne online lub na miejscu w Polsce, jest skierowane do inżynierów uczenia maszynowego, deweloperów AI oraz naukowców danych na poziomie średnim do zaawansowanym, którzy chcą nauczyć się używania QLoRA do efektywnego dopasowywania dużych modeli do określonych zadań i dostosowań.
Po ukończeniu tego szkolenia uczestnicy będą w stanie:
- Zrozumieć teorię stojącą za QLoRA i technikami kwantyzacji dla modeli językowych (LLMs).
- Wdrożyć QLoRA w procesie dopasowywania dużych modeli językowych do zastosowań specjalistycznych.
- Optymalizować wydajność dopasowywania przy ograniczonych zasobach obliczeniowych za pomocą kwantyzacji.
- Efektywnie wdrażać i oceniać dopasowane modele w rzeczywistych zastosowaniach.
Fine-Tuning Open-Source LLMs (LLaMA, Mistral, Qwen, etc.)
14 godzinTo szkolenie prowadzone przez instruktora, dostępne online lub na miejscu w Polsce, jest skierowane do praktyków ML i developerów AI na poziomie średnim, którzy chcą dostosowywać i wdrażać modele o otwartych wagach, takie jak LLaMA, Mistral i Qwen dla konkretnych zastosowań biznesowych lub wewnętrznych.
Po zakończeniu tego szkolenia uczestnicy będą w stanie:
- Zrozumieć ekosystem i różnice między otwartymi źródłami modeli LLM.
- Przygotować zestawy danych i konfiguracje do dostosowywania dla modeli, takich jak LLaMA, Mistral i Qwen.
- Wykonujeć procesy dostosowywania za pomocą Hugging Face Transformers i PEFT.
- Ocenić, zapisać i wdrożyć dostosowane modele w bezpiecznych środowiskach.
Fine-Tuning with Reinforcement Learning from Human Feedback (RLHF)
14 godzinTo szkolenie prowadzone przez instruktora w trybie Polsce (online lub stacjonarnym) jest przeznaczone dla zaawansowanych inżynierów uczenia maszynowego i badaczy sztucznej inteligencji, którzy chcą zastosować RLHF do doszlifowania dużych modeli AI w celu uzyskania lepszej wydajności, bezpieczeństwa i zgodności.
Po zakończeniu tego szkolenia uczestnicy będą w stanie:
- Zrozumieć teoretyczne podstawy RLHF i dlaczego jest ono kluczowe w współczesnym rozwoju sztucznej inteligencji.
- Wdrożyć modele nagród opartych na opinii człowieka, aby kierować procesami uczenia wzmocnionego.
- Doszkolić duże modele językowe za pomocą technik RLHF, aby dostosować wyniki do preferencji człowieka.
- Zastosować najlepsze praktyki w zakresie skalowania procesów RLHF dla systemów sztucznej inteligencji przeznaczonych do produkcji.
Optimizing Large Models for Cost-Effective Fine-Tuning
21 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla zaawansowanych profesjonalistów, którzy chcą opanować techniki optymalizacji dużych modeli pod kątem opłacalnego dostrajania w rzeczywistych scenariuszach.
Po zakończeniu tego szkolenia uczestnicy będą w stanie
- Zrozumieć wyzwania związane z dostrajaniem dużych modeli.
- Zastosować rozproszone techniki szkoleniowe do dużych modeli.
- Wykorzystać kwantyzację modelu i przycinanie w celu zwiększenia wydajności.
- Optymalizować wykorzystanie sprzętu do zadań dostrajania.
- Skutecznie wdrażać dostrojone modele w środowiskach produkcyjnych.
Prompt Engineering and Few-Shot Fine-Tuning
14 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla średniozaawansowanych profesjonalistów, którzy chcą wykorzystać moc szybkiej inżynierii i uczenia się kilku ujęć, aby zoptymalizować wydajność LLM w rzeczywistych zastosowaniach.
Po zakończeniu tego szkolenia uczestnicy będą w stanie
- Zrozumieć zasady inżynierii podpowiedzi i uczenia się kilku strzałów.
- Projektować skuteczne podpowiedzi dla różnych zadań NLP.
- Wykorzystywać techniki "few-shot" do adaptacji LLM przy minimalnej ilości danych.
- Optymalizować wydajność LLM pod kątem praktycznych zastosowań.
Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs
14 godzinTo szkolenie prowadzone przez instruktora w formie Polsce (online lub na miejscu) jest przeznaczone dla data scientistów i inżynierów AI na poziomie średnim, którzy chcą doskonalić duże modele językowe w sposób bardziej ekonomiczny i efektywny, wykorzystując metody takie jak LoRA, Adapter Tuning i Prefix Tuning.
Po zakończeniu tego szkolenia uczestnicy będą w stanie:
- Zrozumieć teorię za podejściami do efektywnego parametru fine-tuning.
- Wdrożyć LoRA, Adapter Tuning i Prefix Tuning za pomocą Hugging Face PEFT.
- Porównać wydajność i koszty związane z metodami PEFT w porównaniu do pełnego fine-tuning.
- Wdrożyć i skalować doskonalone modele językowe z mniejszymi wymaganiami obliczeniowymi i miejsca na dysku.
Introduction to Transfer Learning
14 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla początkujących i średnio zaawansowanych specjalistów od uczenia maszynowego, którzy chcą zrozumieć i zastosować techniki uczenia transferowego w celu poprawy wydajności i wydajności w projektach AI.
Pod koniec tego szkolenia uczestnicy będą w stanie
- Zrozumieć podstawowe pojęcia i korzyści płynące z uczenia transferowego.
- Poznaj popularne wstępnie wytrenowane modele i ich zastosowania.
- Dostrajać wstępnie wytrenowane modele do niestandardowych zadań.
- Zastosować uczenie transferowe do rozwiązywania rzeczywistych problemów w NLP i wizji komputerowej.
Troubleshooting Fine-Tuning Challenges
14 godzinTo prowadzone przez instruktora szkolenie na żywo w Polsce (na miejscu lub zdalnie) jest przeznaczone dla zaawansowanych profesjonalistów, którzy chcą udoskonalić swoje umiejętności w diagnozowaniu i rozwiązywaniu wyzwań związanych z dostrajaniem modeli uczenia maszynowego.
Pod koniec tego szkolenia uczestnicy będą w stanie
- Diagnozować kwestie takie jak nadmierne dopasowanie, niedopasowanie i brak równowagi danych.
- Wdrożyć strategie w celu poprawy konwergencji modelu.
- Optymalizować potoki dostrajania w celu uzyskania lepszej wydajności.
- Debugować procesy szkoleniowe przy użyciu praktycznych narzędzi i technik.