Course Outline

Module I: NumPy – Working with Array Data

1. Creating vectors and matrices using `numpy.array`
2. Array shapes, changing dimensions, data size
3. Basic array operations – indexing, slicing, broadcasting
4. Mathematical functions – element-wise operations
5. Aggregations and statistics (sum, mean, std, etc.)

Module II: Pandas – Tabular Data and Processing

1. Basic data structures: `Series` and `DataFrame`
2. Loading data from `.csv` files
3. Exploring DataFrames – head, describe, info
4. Filtering records and selecting columns
5. Modifying data: adding, deleting, and transforming columns
6. Creating new columns based on existing data
7. Sorting and ordering data
8. Grouping and aggregations
9. Working with large datasets – chunking, data type optimization

Module III: Data Visualization – Matplotlib and Seaborn

1. Differences between matplotlib and seaborn – when to use each library
2. Key types of plots
3. Configuring and styling plots – axes, legends, colors, sizes
4. Creating plots using data from Pandas

Module IV: Exploratory Data Analysis (EDA)

1. Introduction to EDA – goals and analysis process
2. Example analysis on a real dataset
3. Practical project

 

 21 Hours

Number of participants


Price Per Participant (Exc. Tax)

Testimonials (4)

Provisional Courses

Related Categories