Edge AI for Financial Services Training Course
Edge AI for Financial Services focuses on the deployment of Edge AI technologies in banking and finance. This course covers fraud detection, customer service enhancement, and risk management using Edge AI, providing practical knowledge for leveraging AI at the edge in the financial sector.
This instructor-led, live training (online or onsite) is aimed at intermediate-level finance professionals, fintech developers, and AI specialists who wish to implement Edge AI solutions in financial services.
By the end of this training, participants will be able to:
- Understand the role of Edge AI in financial services.
- Implement fraud detection systems using Edge AI.
- Enhance customer service through AI-driven solutions.
- Apply Edge AI for risk management and decision-making.
- Deploy and manage Edge AI solutions in financial environments.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Course Outline
Introduction to Edge AI in Financial Services
- Overview of Edge AI and its applications in finance
- Benefits and challenges of using Edge AI in banking
- Case studies of successful Edge AI applications in finance
Setting Up the Edge AI Environment
- Installing and configuring Edge AI tools
- Integrating financial data sources and collection systems
- Introduction to relevant Edge AI frameworks and libraries
- Hands-on exercises for environment setup
Fraud Detection with Edge AI
- Introduction to fraud detection
- Developing AI models for real-time fraud detection
- Implementing anomaly detection systems
- Hands-on exercises for fraud detection
Enhancing Customer Service Using Edge AI
- Overview of customer service in financial services
- AI techniques for personalized customer interactions
- Implementing AI-driven chatbots and virtual assistants
- Hands-on exercises for customer service applications
Risk Management with Edge AI
- Introduction to risk management
- Using AI for real-time risk assessment and mitigation
- Implementing AI-driven decision support systems
- Hands-on exercises for risk management
Deploying and Managing Edge AI Solutions
- Deploying AI models on financial edge devices
- Monitoring and maintaining Edge AI systems
- Troubleshooting and optimizing deployed models
- Hands-on exercises for deployment and management
Tools and Frameworks for Financial Edge AI
- Overview of tools and frameworks (e.g., TensorFlow Lite, OpenVINO)
- Using TensorFlow Lite for financial AI applications
- Hands-on exercises with optimization tools
Real-World Applications and Case Studies
- Review of successful financial Edge AI projects
- Discussion of industry-specific use cases
- Hands-on project for building and optimizing a real-world financial AI application
Summary and Next Steps
Requirements
- An understanding of AI and machine learning concepts
- Experience with financial services and fintech applications
- Basic programming skills (Python recommended)
Audience
- Finance professionals
- Fintech developers
- AI specialists
Open Training Courses require 5+ participants.
Edge AI for Financial Services Training Course - Booking
Edge AI for Financial Services Training Course - Enquiry
Edge AI for Financial Services - Consultancy Enquiry
Consultancy Enquiry
Provisional Courses
Related Courses
Advanced Edge AI Techniques
14 HoursThis instructor-led, live training in Poland (online or onsite) is aimed at advanced-level AI practitioners, researchers, and developers who wish to master the latest advancements in Edge AI, optimize their AI models for edge deployment, and explore specialized applications across various industries.
By the end of this training, participants will be able to:
- Explore advanced techniques in Edge AI model development and optimization.
- Implement cutting-edge strategies for deploying AI models on edge devices.
- Utilize specialized tools and frameworks for advanced Edge AI applications.
- Optimize performance and efficiency of Edge AI solutions.
- Explore innovative use cases and emerging trends in Edge AI.
- Address advanced ethical and security considerations in Edge AI deployments.
Building AI Solutions on the Edge
14 HoursThis instructor-led, live training in Poland (online or onsite) is aimed at intermediate-level developers, data scientists, and tech enthusiasts who wish to gain practical skills in deploying AI models on edge devices for various applications.
By the end of this training, participants will be able to:
- Understand the principles of Edge AI and its benefits.
- Set up and configure the edge computing environment.
- Develop, train, and optimize AI models for edge deployment.
- Implement practical AI solutions on edge devices.
- Evaluate and improve the performance of edge-deployed models.
- Address ethical and security considerations in Edge AI applications.
Edge AI in Autonomous Systems
14 HoursThis instructor-led, live training in Poland (online or onsite) is aimed at intermediate-level robotics engineers, autonomous vehicle developers, and AI researchers who wish to leverage Edge AI for innovative autonomous system solutions.
By the end of this training, participants will be able to:
- Understand the role and benefits of Edge AI in autonomous systems.
- Develop and deploy AI models for real-time processing on edge devices.
- Implement Edge AI solutions in autonomous vehicles, drones, and robotics.
- Design and optimize control systems using Edge AI.
- Address ethical and regulatory considerations in autonomous AI applications.
Edge AI: From Concept to Implementation
14 HoursThis instructor-led, live training in Poland (online or onsite) is aimed at intermediate-level developers and IT professionals who wish to gain a comprehensive understanding of Edge AI from concept to practical implementation, including setup and deployment.
By the end of this training, participants will be able to:
- Understand the fundamental concepts of Edge AI.
- Set up and configure Edge AI environments.
- Develop, train, and optimize Edge AI models.
- Deploy and manage Edge AI applications.
- Integrate Edge AI with existing systems and workflows.
- Address ethical considerations and best practices in Edge AI implementation.
Edge AI for Healthcare
14 HoursThis instructor-led, live training in Poland (online or onsite) is aimed at intermediate-level healthcare professionals, biomedical engineers, and AI developers who wish to leverage Edge AI for innovative healthcare solutions.
By the end of this training, participants will be able to:
- Understand the role and benefits of Edge AI in healthcare.
- Develop and deploy AI models on edge devices for healthcare applications.
- Implement Edge AI solutions in wearable devices and diagnostic tools.
- Design and deploy patient monitoring systems using Edge AI.
- Address ethical and regulatory considerations in healthcare AI applications.
Edge AI in Industrial Automation
14 HoursThis instructor-led, live training in Poland (online or onsite) is aimed at intermediate-level industrial engineers, manufacturing professionals, and AI developers who wish to implement Edge AI solutions in industrial automation.
By the end of this training, participants will be able to:
- Understand the role of Edge AI in industrial automation.
- Implement predictive maintenance solutions using Edge AI.
- Apply AI techniques for quality control in manufacturing processes.
- Optimize industrial processes using Edge AI.
- Deploy and manage Edge AI solutions in industrial environments.
Edge AI for IoT Applications
14 HoursThis instructor-led, live training in Poland (online or onsite) is aimed at intermediate-level developers, system architects, and industry professionals who wish to leverage Edge AI for enhancing IoT applications with intelligent data processing and analytics capabilities.
By the end of this training, participants will be able to:
- Understand the fundamentals of Edge AI and its application in IoT.
- Set up and configure Edge AI environments for IoT devices.
- Develop and deploy AI models on edge devices for IoT applications.
- Implement real-time data processing and decision-making in IoT systems.
- Integrate Edge AI with various IoT protocols and platforms.
- Address ethical considerations and best practices in Edge AI for IoT.
Deploying AI Models on Edge Devices with NVIDIA Jetson
21 HoursThis instructor-led, live training in Poland (online or onsite) is aimed at intermediate-level AI developers, embedded engineers, and robotics engineers who wish to optimize and deploy AI models on NVIDIA Jetson platforms for edge applications.
By the end of this training, participants will be able to:
- Understand the fundamentals of edge AI and NVIDIA Jetson hardware.
- Optimize AI models for deployment on edge devices.
- Use TensorRT for accelerating deep learning inference.
- Deploy AI models using JetPack SDK and ONNX Runtime.
Edge AI and Robotics: Enabling Autonomous Systems
21 HoursThis instructor-led, live training in Poland (online or onsite) is aimed at intermediate-level to advanced-level robotics engineers, AI developers, and automation specialists who wish to implement Edge AI for robotics applications.
By the end of this training, participants will be able to:
- Understand the role of Edge AI in autonomous systems.
- Deploy AI models on edge devices for real-time robotics.
- Optimize AI performance for low-latency decision-making.
- Integrate computer vision and sensor fusion for robotic autonomy.
Edge AI for Smart Cities
14 HoursThis instructor-led, live training in Poland (online or onsite) is aimed at intermediate-level urban planners, civil engineers, and smart city project managers who wish to leverage Edge AI for smart city initiatives.
By the end of this training, participants will be able to:
- Understand the role of Edge AI in smart city infrastructures.
- Implement Edge AI solutions for traffic management and surveillance.
- Optimize urban resources using Edge AI technologies.
- Integrate Edge AI with existing smart city systems.
- Address ethical and regulatory considerations in smart city deployments.
Edge AI with TensorFlow Lite
14 HoursThis instructor-led, live training in Poland (online or onsite) is aimed at intermediate-level developers, data scientists, and AI practitioners who wish to leverage TensorFlow Lite for Edge AI applications.
By the end of this training, participants will be able to:
- Understand the fundamentals of TensorFlow Lite and its role in Edge AI.
- Develop and optimize AI models using TensorFlow Lite.
- Deploy TensorFlow Lite models on various edge devices.
- Utilize tools and techniques for model conversion and optimization.
- Implement practical Edge AI applications using TensorFlow Lite.
Introduction to Edge AI
14 HoursThis instructor-led, live training in Poland (online or onsite) is aimed at beginner-level developers and IT professionals who wish to understand the fundamentals of Edge AI and its introductory applications.
By the end of this training, participants will be able to:
- Understand the basic concepts and architecture of Edge AI.
- Set up and configure Edge AI environments.
- Develop and deploy simple Edge AI applications.
- Identify and understand the use cases and benefits of Edge AI.
Low-Power AI: Optimizing Edge AI for Energy-Efficient Devices
21 HoursThis instructor-led, live training in Poland (online or onsite) is aimed at advanced-level AI engineers, embedded developers, and hardware engineers who wish to implement AI models on low-power devices while minimizing energy consumption.
By the end of this training, participants will be able to:
- Understand the challenges of running AI on energy-efficient devices.
- Optimize neural networks for low-power inference.
- Utilize quantization, pruning, and model compression techniques.
- Deploy AI models on edge hardware with minimal power usage.
Optimizing AI Models for Edge Devices
14 HoursThis instructor-led, live training in Poland (online or onsite) is aimed at intermediate-level AI developers, machine learning engineers, and system architects who wish to optimize AI models for edge deployment.
By the end of this training, participants will be able to:
- Understand the challenges and requirements of deploying AI models on edge devices.
- Apply model compression techniques to reduce the size and complexity of AI models.
- Utilize quantization methods to enhance model efficiency on edge hardware.
- Implement pruning and other optimization techniques to improve model performance.
- Deploy optimized AI models on various edge devices.
Security and Privacy in Edge AI
14 HoursThis instructor-led, live training in Poland (online or onsite) is aimed at intermediate-level cybersecurity professionals, system administrators, and AI ethics researchers who wish to secure and ethically deploy Edge AI solutions.
By the end of this training, participants will be able to:
- Understand the security and privacy challenges in Edge AI.
- Implement best practices for securing edge devices and data.
- Develop strategies to mitigate security risks in Edge AI deployments.
- Address ethical considerations and ensure compliance with regulations.
- Conduct security assessments and audits for Edge AI applications.