Plan Szkolenia

Introduction

  • TensforFlow Lite's game changing role in embedded systems and IoT

Overview of TensorFlow Lite Features and Operations

  • Addressing limited device resources
  • Default and expanded operations

Setting up TensorFlow Lite

  • Installing the TensorFlow Lite interpreter
  • Installing other TensorFlow packages
  • Working from the command line vs Python API

Choosing a Model to Run on a Device

  • Overview of pre-trained models: image classification, object detection, smart reply, pose estimation, segmentation
  • Choosing a model from TensorFlow Hub or other source

Customizing a Pre-trained Model

  • How transfer learning works
  • Retraining an image classification model

Converting a Model

  • Understanding the TensorFlow Lite format (size, speed, optimizations, etc.)
  • Converting a model to the TensorFlow Lite format

Running a Prediction Model

  • Understanding how the model, interpreter, input data work together
  • Calling the interpreter from a device
  • Running data through the model to obtain predictions

Accelerating Model Operations

  • Understanding on-board acceleration, GPUs, etc.
  • Configuring Delegates to accelerate operations

Adding Model Operations

  • Using TensorFlow Select to add operations to a model.
  • Building a custom version of the interpreter
  • Using Custom operators to write or port new operations

Optimizing the Model

  • Understanding the balance of performance, model size, and accuracy
  • Using the Model Optimization Toolkit to optimize the size and performance of a model
  • Post-training quantization

Troubleshooting

Summary and Conclusion

Wymagania

  • An understanding of deep learning concepts
  • Python programming experience
  • A device running embedded Linux (Raspberry Pi, Coral device, etc.)

Audience

  • Developers
  • Data scientists with an interest in embedded systems
 21 godzin

Liczba uczestników



Cena za uczestnika

Opinie uczestników (5)

Szkolenia Powiązane

Course Outline Buildroot: a Firmware Generator for Embedded Systems

7 godzin

LEDE: Set Up a Linux Wireless Router

7 godzin

Shadowsocks: Set Up a Proxy Server

7 godzin

Yocto Project

28 godzin

The Yocto Project - An Overview - hands-on

28 godzin

TensorFlow Lite for Android

21 godzin

TensorFlow Lite for iOS

21 godzin

Tensorflow Lite for Microcontrollers

21 godzin

Embedded Linux Systems Architecture

35 godzin

Embedded Linux Kernel and Driver Development

14 godzin

Introduction to Embedded Linux (Hands-on training)

14 godzin

Embedded Linux: Building a System from the Ground Up

14 godzin

Embedded GNU/Linux Kernel Internals and Device Drivers

35 godzin

NetApp ONTAP

35 godzin

Powiązane Kategorie