Introduction to R Training Course

Primary tabs

Course Language

This course is delivered in Polish or English.

Course Code

rintro

Duration Duration

21 hours (usually 3 days including breaks)

Requirements Requirements

Good understanding of statistics.

Overview Overview

R is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has also found followers among statisticians, engineers and scientists without computer programming skills who find it easy to use. Its popularity is due to the increasing use of data mining for various goals such as set ad prices, find new drugs more quickly or fine-tune financial models. R has a wide variety of packages for data mining.

This course covers the manipulation of objects in R including reading data, accessing R packages, writing R functions, and making informative graphs. It includes analyzing data using common statistical models. The course teaches how to use the R software (http://www.r-project.org) both on a command line and in a graphical user interface (GUI).

Course Outline Course Outline

Introduction and preliminaries

  • Making R more friendly, R and available GUIs
  • The R environment
  • Related software and documentation
  • R and statistics
  • Using R interactively
  • An introductory session
  • Getting help with functions and features
  • R commands, case sensitivity, etc.
  • Recall and correction of previous commands
  • Executing commands from or diverting output to a file
  • Data permanency and removing objects

Simple manipulations; numbers and vectors

  • Vectors and assignment
  • Vector arithmetic
  • Generating regular sequences
  • Logical vectors
  • Missing values
  • Character vectors
  • Index vectors; selecting and modifying subsets of a data set
  • Other types of objects

Objects, their modes and attributes

  • Intrinsic attributes: mode and length
  • Changing the length of an object
  • Getting and setting attributes
  • The class of an object

Ordered and unordered factors

  • A specific example
  • The function tapply() and ragged arrays
  • Ordered factors

Arrays and matrices

  • Arrays
  • Array indexing. Subsections of an array
  • Index matrices
  • The array() function
    • Mixed vector and array arithmetic. The recycling rule
  • The outer product of two arrays
  • Generalized transpose of an array
  • Matrix facilities
    • Matrix multiplication
    • Linear equations and inversion
    • Eigenvalues and eigenvectors
    • Singular value decomposition and determinants
    • Least squares fitting and the QR decomposition
  • Forming partitioned matrices, cbind() and rbind()
  • The concatenation function, (), with arrays
  • Frequency tables from factors

Lists and data frames

  • Lists
  • Constructing and modifying lists
    • Concatenating lists
  • Data frames
    • Making data frames
    • attach() and detach()
    • Working with data frames
    • Attaching arbitrary lists
    • Managing the search path

Reading data from files

  • The read.table()function
  • The scan() function
  • Accessing builtin datasets
    • Loading data from other R packages
  • Editing data

Probability distributions

  • R as a set of statistical tables
  • Examining the distribution of a set of data
  • One- and two-sample tests

Grouping, loops and conditional execution

  • Grouped expressions
  • Control statements
    • Conditional execution: if statements
    • Repetitive execution: for loops, repeat and while

Writing your own functions

  • Simple examples
  • Defining new binary operators
  • Named arguments and defaults
  • The '...' argument
  • Assignments within functions
  • More advanced examples
    • Efficiency factors in block designs
    • Dropping all names in a printed array
    • Recursive numerical integration
  • Scope
  • Customizing the environment
  • Classes, generic functions and object orientation

Statistical models in R

  • Defining statistical models; formulae
    • Contrasts
  • Linear models
  • Generic functions for extracting model information
  • Analysis of variance and model comparison
    • ANOVA tables
  • Updating fitted models
  • Generalized linear models
    • Families
    • The glm() function
  • Nonlinear least squares and maximum likelihood models
    • Least squares
    • Maximum likelihood
  • Some non-standard models

Graphical procedures

  • High-level plotting commands
    • The plot() function
    • Displaying multivariate data
    • Display graphics
    • Arguments to high-level plotting functions
  • Low-level plotting commands
    • Mathematical annotation
    • Hershey vector fonts
  • Interacting with graphics
  • Using graphics parameters
    • Permanent changes: The par() function
    • Temporary changes: Arguments to graphics functions
  • Graphics parameters list
    • Graphical elements
    • Axes and tick marks
    • Figure margins
    • Multiple figure environment
  • Device drivers
    • PostScript diagrams for typeset documents
    • Multiple graphics devices
  • Dynamic graphics

Packages

  • Standard packages
  • Contributed packages and CRAN
  • Namespaces

Guaranteed to run even with a single delegate!
Public Classroom Public Classroom
Participants from multiple organisations. Topics usually cannot be customised
From 2956PLN
(82)
Private Classroom Private Classroom
Participants are from one organisation only. No external participants are allowed. Usually customised to a specific group, course topics are agreed between the client and the trainer.
From 2979PLN
Request quote
Private Remote Private Remote
The instructor and the participants are in two different physical locations and communicate via the Internet
From 6900PLN
Request quote
SelfStudy SelfStudy
Self-study courses allow you to learn at your own pace on your own time. There is no live instructor involved. The participants use recorded video, quizzes and reading at their own convenience.
Price not set yet
Register Interest

The more delegates, the greater the savings per delegate. Table reflects price per delegate and is used for illustration purposes only, actual prices may differ.

Number of Delegates Public Classroom Private Classroom Private Remote
1 2956PLN 2979PLN 6900PLN
2 2478PLN 2390PLN 4350PLN
3 2319PLN 2193PLN 3500PLN
4 2239PLN 2095PLN 3075PLN
Cannot find a suitable date? Choose Your Course Date >>
Too expensive? Suggest your price

Related Categories


Course Discounts

Course Venue Course Date Course Price [Remote/Classroom]
Adobe Captivate Kielce Tue, 2016-05-31 09:00 1318PLN / 1127PLN
Programming in WPF 4.5 Warszawa, ul. Złota 3/11 Tue, 2016-05-31 09:00 2359PLN / 1355PLN
Excel and VBA Programming for Audit and Finance Professionals Szczecin Tue, 2016-05-31 09:00 1913PLN / 1513PLN
SQL Fundamentals Warszawa, ul. Złota 3/11 Wed, 2016-06-01 09:00 1358PLN / 853PLN
MS Excel - poziom średniozaawansowany Łódź, ul. Tatrzańska 11 Wed, 2016-06-01 09:00 1044PLN / 840PLN
SQL language in MSSQL Toruń, ul. Żeglarska 10/14 Wed, 2016-06-01 09:00 1568PLN / 1198PLN
Bezpieczeństwo aplikacji internetowych Katowice Wed, 2016-06-01 09:30 3606PLN / 2531PLN
Test Automation with Selenium Kraków Mon, 2016-06-06 09:00 3200PLN / 2433PLN
Test Automation with Selenium Katowice Tue, 2016-06-07 09:30 3431PLN / 2469PLN
MS Excel - poziom średniozaawansowany Katowice Wed, 2016-06-08 09:00 700PLN / 771PLN
Programming in C++ Olsztyn, ul. Kajki 3/1 Mon, 2016-06-13 09:00 2936PLN / 2395PLN
Container management with Docker Trójmiasto Tue, 2016-06-14 09:00 4360PLN / 2774PLN
Excel Advanced Katowice Mon, 2016-06-20 09:00 775PLN / 933PLN
Test Automation with Selenium Warszawa, ul. Złota 3/11 Mon, 2016-06-20 09:00 3431PLN / 2327PLN
PostgreSQL Administration and Development Lublin Mon, 2016-06-20 09:30 4025PLN / 3134PLN
Introduction to R Warszawa, ul. Złota 3/11 Tue, 2016-06-21 09:00 3058PLN / 2123PLN
Creating and managing Web sites Wrocław, ul.Ludwika Rydygiera 2a/22 Mon, 2016-06-27 09:00 3410PLN / 2555PLN
Programming in C Gdynia Mon, 2016-06-27 09:00 1590PLN / 1143PLN
Distributed Messaging with Apache Kafka Katowice Mon, 2016-06-27 09:30 4998PLN / 3288PLN
Design Patterns in C# Wrocław, ul.Ludwika Rydygiera 2a/22 Wed, 2016-06-29 09:00 1865PLN / 1392PLN
Visual Basic for Applications (VBA) for Analysts Poznan, Garbary Mon, 2016-07-04 09:00 1912PLN / 1278PLN
Debian Administration Poznan, Garbary Mon, 2016-07-04 09:00 3157PLN / 2083PLN
A Practical Guide to Successful Pricing Strategies Poznan, Garbary Wed, 2016-07-06 09:00 1427PLN / 1093PLN
Excel and VBA Programming for Audit and Finance Professionals Warszawa, ul. Złota 3/11 Mon, 2016-07-11 09:00 1913PLN / 1441PLN
Machine Learning Fundamentals with R Warszawa, ul. Złota 3/11 Mon, 2016-07-18 09:00 2523PLN / 1828PLN
Building Web Apps using the MEAN stack Szczecin Mon, 2016-07-18 09:00 5538PLN / 3351PLN
Microsoft Access - download the data Poznan, Garbary Wed, 2016-07-20 09:00 1117PLN / 856PLN
Python Programming Warszawa, ul. Złota 3/11 Mon, 2016-08-01 09:00 5790PLN / 3753PLN
Programming in WPF 4.5 Warszawa, ul. Złota 3/11 Mon, 2016-09-05 09:00 2359PLN / 1355PLN
BPMN 2.0 for Business Analysts Wrocław, ul.Ludwika Rydygiera 2a/22 Tue, 2016-09-27 09:00 3110PLN / 2337PLN

Upcoming Courses

VenueCourse DateCourse Price [Remote/Classroom]
Białystok, ul. Malmeda 1Tue, 2016-06-14 09:003075PLN / 2246PLN
Poznan, GarbaryWed, 2016-06-15 09:003075PLN / 2128PLN
Zielona Góra, ul. Reja 6Wed, 2016-06-15 09:003075PLN / 2170PLN
Olsztyn, ul. Kajki 3/1Mon, 2016-06-20 09:003075PLN / 2187PLN
Warszawa, ul. Złota 3/11Tue, 2016-06-21 09:003058PLN / 2123PLN

Some of our clients